Susanne Henninger , Rupesh Chafle , Emad Maawad , Benjamin Klusemann , Martin Müller , Peter Staron
{"title":"Impact of friction stir welding-like heat cycles on precipitates in AA7050 analysed by SAXS and numerical modelling","authors":"Susanne Henninger , Rupesh Chafle , Emad Maawad , Benjamin Klusemann , Martin Müller , Peter Staron","doi":"10.1016/j.mtla.2025.102343","DOIUrl":null,"url":null,"abstract":"<div><div>Precipitation kinetics in AA7050 during heat cycles as they occur in friction stir welding (FSW) were studied via small-angle X-ray scattering (SAXS), X-ray diffraction (XRD) and numerical modelling using the PanPrecipitation software. Reversion experiments were conducted for the calibration of the used model and the reversion stages of dissolution, growth and coarsening of precipitates are successfully modelled. Additionally, reversion experiments on an AA7108 alloy from literature data were modelled, affirming that other AA7xxx alloys can be described with the developed model as well. The model was used to predict precipitation kinetics in AA7050-T7451 during heat cycles typically occurring in FSW, enabling the prediction of the evolution of volume fraction and precipitate size distribution of <span><math><mi>η</mi></math></span>-precipitates at elevated temperatures, matching experimental results. For instance, with increasing temperature, stronger coarsening as well as lower final volume fractions are expected. Finally, the influence of maximum temperature and welding speed on the precipitate size distribution was studied, providing guidelines for temperature-driven process design.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"39 ","pages":"Article 102343"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152925000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Precipitation kinetics in AA7050 during heat cycles as they occur in friction stir welding (FSW) were studied via small-angle X-ray scattering (SAXS), X-ray diffraction (XRD) and numerical modelling using the PanPrecipitation software. Reversion experiments were conducted for the calibration of the used model and the reversion stages of dissolution, growth and coarsening of precipitates are successfully modelled. Additionally, reversion experiments on an AA7108 alloy from literature data were modelled, affirming that other AA7xxx alloys can be described with the developed model as well. The model was used to predict precipitation kinetics in AA7050-T7451 during heat cycles typically occurring in FSW, enabling the prediction of the evolution of volume fraction and precipitate size distribution of -precipitates at elevated temperatures, matching experimental results. For instance, with increasing temperature, stronger coarsening as well as lower final volume fractions are expected. Finally, the influence of maximum temperature and welding speed on the precipitate size distribution was studied, providing guidelines for temperature-driven process design.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).