Construction of cross-linked PEO grafting copolymer for high-performance gel electrolyte

IF 5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Shuangshuang Wang, Huizi Zhang, Jilu Ma, Dejia Liu, Tonghui Zhang, Yuchao Li, Guang Li
{"title":"Construction of cross-linked PEO grafting copolymer for high-performance gel electrolyte","authors":"Shuangshuang Wang,&nbsp;Huizi Zhang,&nbsp;Jilu Ma,&nbsp;Dejia Liu,&nbsp;Tonghui Zhang,&nbsp;Yuchao Li,&nbsp;Guang Li","doi":"10.1016/j.polymertesting.2024.108655","DOIUrl":null,"url":null,"abstract":"<div><div>It is an urgent demand of polyethylene oxide with poor crystallinity, high electrolyte affinity and ionic conductivity in portable electronics usage. In the present work, crosslinked poly (glycidyl methacrylate) (PGMA) grafting modified PEO has been prepared. Firstly, PGMA with controlled chain length can be highly efficient covalent anchored on PEO main chain with the assistance of N-hydroxyphthalimide (NHPI) catalysis combined with activators regenerated by electron transfer ATRP (ARGET-ATRP). Then the grafted PGMA chains undergone crosslinked process in the presence of 4, 4-diaminodiphenyl sulfone (DDS) to produce crosslinked PEO<em>-g</em>-PGMA (C-PEO-<em>g</em>-PGMA) film. The film could be used in electronic devices, and it exhibit amorphous structure, higher electrolyte wettability and mechanical strength compared to that of pure PEO. Moreover, the performance for electrical double-layer capacitor (EDLC) assembled with electrolyte-soaked C-PEO-<em>g</em>-PGMA films were sharply higher than that of EDLC with PEO. The present study provides a novel and highly efficient methodology for the modification of poly (ethylene oxide) (PEO) through crosslinked grafting side chains.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"142 ","pages":"Article 108655"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824003325","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

It is an urgent demand of polyethylene oxide with poor crystallinity, high electrolyte affinity and ionic conductivity in portable electronics usage. In the present work, crosslinked poly (glycidyl methacrylate) (PGMA) grafting modified PEO has been prepared. Firstly, PGMA with controlled chain length can be highly efficient covalent anchored on PEO main chain with the assistance of N-hydroxyphthalimide (NHPI) catalysis combined with activators regenerated by electron transfer ATRP (ARGET-ATRP). Then the grafted PGMA chains undergone crosslinked process in the presence of 4, 4-diaminodiphenyl sulfone (DDS) to produce crosslinked PEO-g-PGMA (C-PEO-g-PGMA) film. The film could be used in electronic devices, and it exhibit amorphous structure, higher electrolyte wettability and mechanical strength compared to that of pure PEO. Moreover, the performance for electrical double-layer capacitor (EDLC) assembled with electrolyte-soaked C-PEO-g-PGMA films were sharply higher than that of EDLC with PEO. The present study provides a novel and highly efficient methodology for the modification of poly (ethylene oxide) (PEO) through crosslinked grafting side chains.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Testing
Polymer Testing 工程技术-材料科学:表征与测试
CiteScore
10.70
自引率
5.90%
发文量
328
审稿时长
44 days
期刊介绍: Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization. The scope includes but is not limited to the following main topics: Novel testing methods and Chemical analysis • mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology Physical properties and behaviour of novel polymer systems • nanoscale properties, morphology, transport properties Degradation and recycling of polymeric materials when combined with novel testing or characterization methods • degradation, biodegradation, ageing and fire retardancy Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信