{"title":"Construction of cross-linked PEO grafting copolymer for high-performance gel electrolyte","authors":"Shuangshuang Wang, Huizi Zhang, Jilu Ma, Dejia Liu, Tonghui Zhang, Yuchao Li, Guang Li","doi":"10.1016/j.polymertesting.2024.108655","DOIUrl":null,"url":null,"abstract":"<div><div>It is an urgent demand of polyethylene oxide with poor crystallinity, high electrolyte affinity and ionic conductivity in portable electronics usage. In the present work, crosslinked poly (glycidyl methacrylate) (PGMA) grafting modified PEO has been prepared. Firstly, PGMA with controlled chain length can be highly efficient covalent anchored on PEO main chain with the assistance of N-hydroxyphthalimide (NHPI) catalysis combined with activators regenerated by electron transfer ATRP (ARGET-ATRP). Then the grafted PGMA chains undergone crosslinked process in the presence of 4, 4-diaminodiphenyl sulfone (DDS) to produce crosslinked PEO<em>-g</em>-PGMA (C-PEO-<em>g</em>-PGMA) film. The film could be used in electronic devices, and it exhibit amorphous structure, higher electrolyte wettability and mechanical strength compared to that of pure PEO. Moreover, the performance for electrical double-layer capacitor (EDLC) assembled with electrolyte-soaked C-PEO-<em>g</em>-PGMA films were sharply higher than that of EDLC with PEO. The present study provides a novel and highly efficient methodology for the modification of poly (ethylene oxide) (PEO) through crosslinked grafting side chains.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"142 ","pages":"Article 108655"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824003325","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
It is an urgent demand of polyethylene oxide with poor crystallinity, high electrolyte affinity and ionic conductivity in portable electronics usage. In the present work, crosslinked poly (glycidyl methacrylate) (PGMA) grafting modified PEO has been prepared. Firstly, PGMA with controlled chain length can be highly efficient covalent anchored on PEO main chain with the assistance of N-hydroxyphthalimide (NHPI) catalysis combined with activators regenerated by electron transfer ATRP (ARGET-ATRP). Then the grafted PGMA chains undergone crosslinked process in the presence of 4, 4-diaminodiphenyl sulfone (DDS) to produce crosslinked PEO-g-PGMA (C-PEO-g-PGMA) film. The film could be used in electronic devices, and it exhibit amorphous structure, higher electrolyte wettability and mechanical strength compared to that of pure PEO. Moreover, the performance for electrical double-layer capacitor (EDLC) assembled with electrolyte-soaked C-PEO-g-PGMA films were sharply higher than that of EDLC with PEO. The present study provides a novel and highly efficient methodology for the modification of poly (ethylene oxide) (PEO) through crosslinked grafting side chains.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.