An automated information extraction model for unstructured discharge letters using large language models and GPT-4

Robert M. Siepmann , Giulia Baldini , Cynthia S. Schmidt , Daniel Truhn , Gustav Anton Müller-Franzes , Amin Dada , Jens Kleesiek , Felix Nensa , René Hosch
{"title":"An automated information extraction model for unstructured discharge letters using large language models and GPT-4","authors":"Robert M. Siepmann ,&nbsp;Giulia Baldini ,&nbsp;Cynthia S. Schmidt ,&nbsp;Daniel Truhn ,&nbsp;Gustav Anton Müller-Franzes ,&nbsp;Amin Dada ,&nbsp;Jens Kleesiek ,&nbsp;Felix Nensa ,&nbsp;René Hosch","doi":"10.1016/j.health.2024.100378","DOIUrl":null,"url":null,"abstract":"<div><div>The administrative burden of manually extracting clinical information from discharge letters is a common challenge in healthcare. This study aims to explore the use of Large Language Models (LLMs), specifically Generative Pretrained Transformer 4 (GPT-4) by OpenAI, for automated extraction of diagnoses, medications, and allergies from discharge letters. Data for this study were sourced from two healthcare institutions in Germany, comprising discharge letters for ten patients from each institution. The first experiment is conducted using a standardized prompt for information extraction. However, challenges were encountered, and the prompt was fine-tuned in a second experiment to improve the results. We further tested whether open-source LLMs can achieve similar results. In the first experiment, primary diagnoses were identified with 85% accuracy and secondary diagnoses with 55.8%. Medications and allergies were extracted with 85.9% and 100% accuracy, respectively. The International Classification of Diseases, 10th revision (ICD-10) codes for the identified diagnoses achieved an accuracy of 85% for primary diagnoses and 60.7% for secondary diagnoses. Anatomical Therapeutic Chemical (ATC) codes were identified with an accuracy of 78.8%. On the other hand, open-source LLMs did not provide similar levels of accuracy and could not consistently fill the template. With prompt fine-tuning in the second experiment, the primary diagnoses, secondary diagnoses, and medications could be predicted with 95%, 88.9%, and 92.2% accuracy, respectively. GPT-4 shows excellent potential for automated extraction of crucial diagnostic and medication information from discharge letters, presumably lowering the administrative burden for healthcare professionals and improving patient outcomes.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"7 ","pages":"Article 100378"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The administrative burden of manually extracting clinical information from discharge letters is a common challenge in healthcare. This study aims to explore the use of Large Language Models (LLMs), specifically Generative Pretrained Transformer 4 (GPT-4) by OpenAI, for automated extraction of diagnoses, medications, and allergies from discharge letters. Data for this study were sourced from two healthcare institutions in Germany, comprising discharge letters for ten patients from each institution. The first experiment is conducted using a standardized prompt for information extraction. However, challenges were encountered, and the prompt was fine-tuned in a second experiment to improve the results. We further tested whether open-source LLMs can achieve similar results. In the first experiment, primary diagnoses were identified with 85% accuracy and secondary diagnoses with 55.8%. Medications and allergies were extracted with 85.9% and 100% accuracy, respectively. The International Classification of Diseases, 10th revision (ICD-10) codes for the identified diagnoses achieved an accuracy of 85% for primary diagnoses and 60.7% for secondary diagnoses. Anatomical Therapeutic Chemical (ATC) codes were identified with an accuracy of 78.8%. On the other hand, open-source LLMs did not provide similar levels of accuracy and could not consistently fill the template. With prompt fine-tuning in the second experiment, the primary diagnoses, secondary diagnoses, and medications could be predicted with 95%, 88.9%, and 92.2% accuracy, respectively. GPT-4 shows excellent potential for automated extraction of crucial diagnostic and medication information from discharge letters, presumably lowering the administrative burden for healthcare professionals and improving patient outcomes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信