J.E. Camacho-Cogollo , Cristhian Felipe Patiño Zambrano , Christian Lochmuller , Claudia C. Colmenares-Mejia , Nicolas Rozo , Mario A. Isaza-Ruget , Paul Rodriguez , Andrés García
{"title":"An application of natural language processing for hypoglycemic event identification in patients with diabetes mellitus","authors":"J.E. Camacho-Cogollo , Cristhian Felipe Patiño Zambrano , Christian Lochmuller , Claudia C. Colmenares-Mejia , Nicolas Rozo , Mario A. Isaza-Ruget , Paul Rodriguez , Andrés García","doi":"10.1016/j.health.2024.100381","DOIUrl":null,"url":null,"abstract":"<div><div>The therapeutic goal for diabetes mellitus is to maintain normal blood glucose levels, but in some cases, hypoglycemia may occur as a consequence of treatment. Identifying patients with hypoglycemia is critical to preventing adverse events and mortality. However, hypoglycemic events are often not accurately documented in electronic health records (EHRs). This study presents a retrospective analysis of the EHRs of patients with diabetes mellitus. We hypothesize that text analytics and machine learning can identify possible hypoglycemic incidents from unstructured physician notes in electronic health records. Our analysis applies these techniques using the Python programming language as a tool. It also considers words that describe symptoms related to hypoglycemia. The analysis involves searching physicians' notes for keywords and applying supervised classification methods to 146,542 records. Natural language processing (NLP) and machine learning algorithms are used to identify possible hypoglycemic events and related symptoms in physicians’ notes. A multi-layer perceptron (MLP) model produces the best classification performance among all the models tested in this study, with an obtained accuracy of 0.87. We show that the NLP approach can effectively identify and automate the text-based detection process of potential hypoglycemic events, and can subsequently be used to make informed decisions about potential patient risks.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"7 ","pages":"Article 100381"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The therapeutic goal for diabetes mellitus is to maintain normal blood glucose levels, but in some cases, hypoglycemia may occur as a consequence of treatment. Identifying patients with hypoglycemia is critical to preventing adverse events and mortality. However, hypoglycemic events are often not accurately documented in electronic health records (EHRs). This study presents a retrospective analysis of the EHRs of patients with diabetes mellitus. We hypothesize that text analytics and machine learning can identify possible hypoglycemic incidents from unstructured physician notes in electronic health records. Our analysis applies these techniques using the Python programming language as a tool. It also considers words that describe symptoms related to hypoglycemia. The analysis involves searching physicians' notes for keywords and applying supervised classification methods to 146,542 records. Natural language processing (NLP) and machine learning algorithms are used to identify possible hypoglycemic events and related symptoms in physicians’ notes. A multi-layer perceptron (MLP) model produces the best classification performance among all the models tested in this study, with an obtained accuracy of 0.87. We show that the NLP approach can effectively identify and automate the text-based detection process of potential hypoglycemic events, and can subsequently be used to make informed decisions about potential patient risks.