Adaptive reinforcement learning for energy management – A progressive approach to boost climate resilience and energy flexibility

IF 13 Q1 ENERGY & FUELS
Vahid M. Nik , Kavan Javanroodi
{"title":"Adaptive reinforcement learning for energy management – A progressive approach to boost climate resilience and energy flexibility","authors":"Vahid M. Nik ,&nbsp;Kavan Javanroodi","doi":"10.1016/j.adapen.2025.100213","DOIUrl":null,"url":null,"abstract":"<div><div>Energy management in urban areas is challenging due to diverse energy users, dynamics environmental conditions, and the added complexity and instability of extreme weather events. We incorporate adaptive reinforcement learning (ARL) into energy management (EM) and introduce a novel approach, called ARLEM. An online, value-based, model-free ARL engine is designed that updates its policy periodically and partially by replacing less favorable actions with those better adapted to evolving environmental conditions. Multiple policy update mechanisms are assessed, varying based on the frequency and length of updates and the action selection criteria. ARLEM is tested to control the energy performance of typical urban blocks in Madrid and Stockholm considering 17 future climate scenarios for 2040–2069. Each block contains 24 buildings of different types and ages. In Madrid, ARLEM is tested for a summer with two heatwaves and in Stockholm for a winter with two cold waves. Three performance indicators are defined to evaluate the effectiveness and resilience of different control approaches during extreme weather events. ARLEM demonstrates an ability to increase climate resilience in the studied blocks by increasing energy flexibility in the network and reducing both average and peak energy demands while affecting indoor thermal comfort marginally. Since the approach does not require any information about the system dynamics, it is easy to cope with the complexities of building systems and technologies, making it an affordable technology to control large urban areas with diverse types of buildings.</div></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"17 ","pages":"Article 100213"},"PeriodicalIF":13.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792425000071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Energy management in urban areas is challenging due to diverse energy users, dynamics environmental conditions, and the added complexity and instability of extreme weather events. We incorporate adaptive reinforcement learning (ARL) into energy management (EM) and introduce a novel approach, called ARLEM. An online, value-based, model-free ARL engine is designed that updates its policy periodically and partially by replacing less favorable actions with those better adapted to evolving environmental conditions. Multiple policy update mechanisms are assessed, varying based on the frequency and length of updates and the action selection criteria. ARLEM is tested to control the energy performance of typical urban blocks in Madrid and Stockholm considering 17 future climate scenarios for 2040–2069. Each block contains 24 buildings of different types and ages. In Madrid, ARLEM is tested for a summer with two heatwaves and in Stockholm for a winter with two cold waves. Three performance indicators are defined to evaluate the effectiveness and resilience of different control approaches during extreme weather events. ARLEM demonstrates an ability to increase climate resilience in the studied blocks by increasing energy flexibility in the network and reducing both average and peak energy demands while affecting indoor thermal comfort marginally. Since the approach does not require any information about the system dynamics, it is easy to cope with the complexities of building systems and technologies, making it an affordable technology to control large urban areas with diverse types of buildings.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信