{"title":"Optimizing IoT network lifetime through an enhanced hybrid energy harvesting system","authors":"Sirine Rabah , Aida Zaier , Sandra Sendra , Jaime Lloret , Hassen Dahman","doi":"10.1016/j.suscom.2025.101081","DOIUrl":null,"url":null,"abstract":"<div><div>The growing need for sustainable and renewable energy sources has become critical with the Internet of Things (IoT) advancement. IoT relies on low-power, battery-operated devices, but the limited lifespan of these batteries requires frequent recharging or replacement, which is costly and time-consuming. Researchers have proposed energy harvesting systems that capture sustainable ambient energy from the environment to address this issue. This paper presents a hybrid system for harvesting sustainable energy from solar and wind sources. The system features a boost converter controlled by a novel hybrid method combining the Honey Badger Algorithm (HBA) and Harris Hawks Optimization (HHO). This method maximizes power extraction from solar and wind sources, enhancing overall system efficiency. Additionally, the system includes an innovative energy management algorithm that selects the most powerful input source while protecting the storage battery from overcharging or complete depletion, thereby extending its lifespan. The proposed design is validated through MATLAB/Simulink simulations. The HHO–HBA MPPT is compared with existing MPPT methods, evaluating efficiency, battery charge curves, and IoT network energy status. Simulation results show that the proposed approach significantly increases network longevity, offering a cost-effective and sustainable solution for the energy needs of Wireless Sensor Network (WSN)-IoT devices.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"46 ","pages":"Article 101081"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000010","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The growing need for sustainable and renewable energy sources has become critical with the Internet of Things (IoT) advancement. IoT relies on low-power, battery-operated devices, but the limited lifespan of these batteries requires frequent recharging or replacement, which is costly and time-consuming. Researchers have proposed energy harvesting systems that capture sustainable ambient energy from the environment to address this issue. This paper presents a hybrid system for harvesting sustainable energy from solar and wind sources. The system features a boost converter controlled by a novel hybrid method combining the Honey Badger Algorithm (HBA) and Harris Hawks Optimization (HHO). This method maximizes power extraction from solar and wind sources, enhancing overall system efficiency. Additionally, the system includes an innovative energy management algorithm that selects the most powerful input source while protecting the storage battery from overcharging or complete depletion, thereby extending its lifespan. The proposed design is validated through MATLAB/Simulink simulations. The HHO–HBA MPPT is compared with existing MPPT methods, evaluating efficiency, battery charge curves, and IoT network energy status. Simulation results show that the proposed approach significantly increases network longevity, offering a cost-effective and sustainable solution for the energy needs of Wireless Sensor Network (WSN)-IoT devices.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.