Development of fully-resorption replacement paste-like organic/inorganic artificial bones compatible with bone remodeling cycles

Q3 Biochemistry, Genetics and Molecular Biology
Yuki Kamaya , Shiori Kato , Kazuaki Nakano , Masaki Nagaya , Hiroshi Nagashima , Mamoru Aizawa
{"title":"Development of fully-resorption replacement paste-like organic/inorganic artificial bones compatible with bone remodeling cycles","authors":"Yuki Kamaya ,&nbsp;Shiori Kato ,&nbsp;Kazuaki Nakano ,&nbsp;Masaki Nagaya ,&nbsp;Hiroshi Nagashima ,&nbsp;Mamoru Aizawa","doi":"10.1016/j.bbiosy.2025.100107","DOIUrl":null,"url":null,"abstract":"<div><div>Calcium-phosphate cement (CPC), commonly used as a bone graft substitute, sets as hydroxyapatite (HAp) and remains in the body for extended periods. To enhance bioresorbabability, we developed a chelate-setting tricalcium β-phosphate (β-TCP) cement using inositol phosphate (IP6) surface modification. By incorporating poly(lactic-co-glycolic acid) (PLGA) particles as a pore-forming agent and calcium sulfate hemihydrate (CSH) to this CPC, we created an organic/inorganic hybrid cement combining bioresorbability with favorable material properties. In this study, varying amounts of PLGA particles were added alongside CSH, and the resulting cement's properties, cytotoxicity, and <em>in vivo</em> response large animals (pigs) were assessed. The cement exhibited a compressive strength of ∼ 30 MPa and set within 15 min, making it suitable for clinical use. Cytotoxicity tests using Transwell® demonstrated cell growth in all cement specimens. In a pig tibia model, the amount of PLGA particle of 5 mass%, 10 mass%, and 20 mass% were tested to optimize material resorption and bone formation, compared with commercial HAp-based CPCs. Histological evaluations showed that higher amount of PLGA particles (10 mass% and 20 mass%) led to increased material resorption but impaired bone formation. The cement containing 5 mass% PLGA particles achieved the best balance, promoting the highest rate of bone formation. Thus, 5 mass% PLGA is the optimal amount for balancing resorption and bone regeneration in β-TCP cement. This formulation is expected to serve as a fully absorbable hybrid paste-type artificial bone supporting bone remodeling cycles.</div></div>","PeriodicalId":72379,"journal":{"name":"Biomaterials and biosystems","volume":"17 ","pages":"Article 100107"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials and biosystems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666534425000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium-phosphate cement (CPC), commonly used as a bone graft substitute, sets as hydroxyapatite (HAp) and remains in the body for extended periods. To enhance bioresorbabability, we developed a chelate-setting tricalcium β-phosphate (β-TCP) cement using inositol phosphate (IP6) surface modification. By incorporating poly(lactic-co-glycolic acid) (PLGA) particles as a pore-forming agent and calcium sulfate hemihydrate (CSH) to this CPC, we created an organic/inorganic hybrid cement combining bioresorbability with favorable material properties. In this study, varying amounts of PLGA particles were added alongside CSH, and the resulting cement's properties, cytotoxicity, and in vivo response large animals (pigs) were assessed. The cement exhibited a compressive strength of ∼ 30 MPa and set within 15 min, making it suitable for clinical use. Cytotoxicity tests using Transwell® demonstrated cell growth in all cement specimens. In a pig tibia model, the amount of PLGA particle of 5 mass%, 10 mass%, and 20 mass% were tested to optimize material resorption and bone formation, compared with commercial HAp-based CPCs. Histological evaluations showed that higher amount of PLGA particles (10 mass% and 20 mass%) led to increased material resorption but impaired bone formation. The cement containing 5 mass% PLGA particles achieved the best balance, promoting the highest rate of bone formation. Thus, 5 mass% PLGA is the optimal amount for balancing resorption and bone regeneration in β-TCP cement. This formulation is expected to serve as a fully absorbable hybrid paste-type artificial bone supporting bone remodeling cycles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
审稿时长
25 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信