A liquid chromatography-high-resolution mass spectrometry method for separation and identification of hemoglobin variant subunits with mass shifts less than 1 Da
Ainslie Chen , Ryan M. Aquino , Hector A. Vidal , Carolyn V. Wong , Ruben Y. Luo
{"title":"A liquid chromatography-high-resolution mass spectrometry method for separation and identification of hemoglobin variant subunits with mass shifts less than 1 Da","authors":"Ainslie Chen , Ryan M. Aquino , Hector A. Vidal , Carolyn V. Wong , Ruben Y. Luo","doi":"10.1016/j.jmsacl.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Identification of hemoglobin (Hb) variants is valuable in clinical testing. A common issue with conventional methods for identifying Hb variants is their subpar ability to provide structural breakdowns of the variants. Reports have surfaced of high-resolution mass spectrometry (HR-MS) methods that improve on traditional methods; however, ambiguities may arise without separation of Hb subunits prior to HR-MS analysis.</div></div><div><h3>Methods</h3><div>We report a liquid chromatography-high-resolution mass spectrometry (LC-HR-MS) method to separate several pairs of normal and variant Hb subunits with mass shifts of less than 1 Da and successfully identify them in intact-protein and top-down analyses. LC separation was facilitated by a C4 reversed-phase column.</div></div><div><h3>Results</h3><div>Seven heterozygous Hb variant samples (Hb C with α-thalassemia trait, Hb E, Hb D-Punjab, Hb G-Accra, Hb G-Siriraj, Hb Tarrant, and Hb G-Waimanalo) were selected to demonstrate the LC separation of Hb variant and normal subunits with mass shifts of less than 1 Da. The analytes could be explicitly observed in the deconvoluted MS<sup>1</sup> mass spectra. The top-down analysis matched the amino acid sequences of the correct Hb variant subunits.</div></div><div><h3>Conclusions</h3><div>The LC-HR-MS method described can effectively separate and identify Hb subunits, especially when the variant subunits have mass deviations of less than 1 Da from their corresponding normal subunits. With further evaluation to prove the clinical utility, the HR-MS methods including CE-HR-MS have the potential to complement or partially replace conventional methods of Hb variant identification in clinical laboratories.</div></div>","PeriodicalId":52406,"journal":{"name":"Journal of Mass Spectrometry and Advances in the Clinical Lab","volume":"35 ","pages":"Pages 1-7"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry and Advances in the Clinical Lab","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667145X25000021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Identification of hemoglobin (Hb) variants is valuable in clinical testing. A common issue with conventional methods for identifying Hb variants is their subpar ability to provide structural breakdowns of the variants. Reports have surfaced of high-resolution mass spectrometry (HR-MS) methods that improve on traditional methods; however, ambiguities may arise without separation of Hb subunits prior to HR-MS analysis.
Methods
We report a liquid chromatography-high-resolution mass spectrometry (LC-HR-MS) method to separate several pairs of normal and variant Hb subunits with mass shifts of less than 1 Da and successfully identify them in intact-protein and top-down analyses. LC separation was facilitated by a C4 reversed-phase column.
Results
Seven heterozygous Hb variant samples (Hb C with α-thalassemia trait, Hb E, Hb D-Punjab, Hb G-Accra, Hb G-Siriraj, Hb Tarrant, and Hb G-Waimanalo) were selected to demonstrate the LC separation of Hb variant and normal subunits with mass shifts of less than 1 Da. The analytes could be explicitly observed in the deconvoluted MS1 mass spectra. The top-down analysis matched the amino acid sequences of the correct Hb variant subunits.
Conclusions
The LC-HR-MS method described can effectively separate and identify Hb subunits, especially when the variant subunits have mass deviations of less than 1 Da from their corresponding normal subunits. With further evaluation to prove the clinical utility, the HR-MS methods including CE-HR-MS have the potential to complement or partially replace conventional methods of Hb variant identification in clinical laboratories.