Investigating secondary crystallisation of polyamide-12 using fast scanning calorimetry

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL
Benjamin Sanders , Matthew North , Edward Cant , Michael Jenkins
{"title":"Investigating secondary crystallisation of polyamide-12 using fast scanning calorimetry","authors":"Benjamin Sanders ,&nbsp;Matthew North ,&nbsp;Edward Cant ,&nbsp;Michael Jenkins","doi":"10.1016/j.tca.2025.179948","DOIUrl":null,"url":null,"abstract":"<div><div>Polyamide 12 (PA-12) is a strong and durable thermoplastic commonly used within advanced polymer processing techniques, such as powder bed fusion (PBF). The use of PA-12 for the fabrication of functional, end-use components is highly dependent on the morphology, size, shape, and stability of the crystalline phase. Secondary crystallisation, an aging process rarely studied in previous PA-12 Lature, can cause further developments in crystallinity that also alter the property profile of the material during PBF. To the best of the authors knowledge, this is the first in-depth investigation into the secondary crystallisation behaviour of PA-12 using fast scanning calorimetry (FSC). Results indicated that, across a wide isothermal crystallisation temperature (T<sub>c</sub>) range, the crystalline structure, rate of secondary crystallisation, and the mechanism of lamellar thickening, are all closely correlated to crystallisation time (t<sub>c</sub>) and temperature (T<sub>c</sub>). At crystallisation temperatures between 100 °C and 130 °C, PA-12 crystallises into the hexagonal gamma (γ) phase, whilst T<sub>c</sub> ≥ 140 °C, larger and more thermodynamically stable alpha-prime (α’) crystals are able to grow. Independent of crystal polymorph, there is significant evidence of secondary crystallisation. For extended t<sub>c</sub>, the melting endotherm progressively shifts to higher temperatures, indicative of a slow, yet continuous lamellar thickening process. In γ crystals, the melting enthalpy and melting temperature increase linearly as a function of the logarithm of t<sub>c</sub> (R<sup>2</sup> &gt; 0.96), suggesting that solid-state diffusion processes such as chain-sliding and chain refolding are the dominant cause of lamellar thickening. However, within the α’ phase, hydrogen bonding can be more easily attained, resulting in a more rigid crystal structure that reduces chain mobility and prevents lamellar thickening via chain sliding or refolding. Thickening instead occurs through the incorporation of inter-lamellae amorphous chains, across the melt-crystal interface, via Hay's reptation-diffusion mechanism. This is evidenced by the thickening of α’ crystals becoming dependent on the square root of time (R<sup>2</sup> &gt; 0.96). Such insight into the secondary crystallisation behaviour of PA-12 could be useful within the PBF industry in order to help predict the volume shrinkage effects associated with polymer crystallisation, allowing improvements to the dimensional precision and performance of final components. Similarly, an enriched understanding of the mechanisms and rate of secondary crystallisation could reveal more information about the thermal properties of un-sintered PA-12 powder, and its suitability for re-use in future build cycles.</div></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"745 ","pages":"Article 179948"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603125000255","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polyamide 12 (PA-12) is a strong and durable thermoplastic commonly used within advanced polymer processing techniques, such as powder bed fusion (PBF). The use of PA-12 for the fabrication of functional, end-use components is highly dependent on the morphology, size, shape, and stability of the crystalline phase. Secondary crystallisation, an aging process rarely studied in previous PA-12 Lature, can cause further developments in crystallinity that also alter the property profile of the material during PBF. To the best of the authors knowledge, this is the first in-depth investigation into the secondary crystallisation behaviour of PA-12 using fast scanning calorimetry (FSC). Results indicated that, across a wide isothermal crystallisation temperature (Tc) range, the crystalline structure, rate of secondary crystallisation, and the mechanism of lamellar thickening, are all closely correlated to crystallisation time (tc) and temperature (Tc). At crystallisation temperatures between 100 °C and 130 °C, PA-12 crystallises into the hexagonal gamma (γ) phase, whilst Tc ≥ 140 °C, larger and more thermodynamically stable alpha-prime (α’) crystals are able to grow. Independent of crystal polymorph, there is significant evidence of secondary crystallisation. For extended tc, the melting endotherm progressively shifts to higher temperatures, indicative of a slow, yet continuous lamellar thickening process. In γ crystals, the melting enthalpy and melting temperature increase linearly as a function of the logarithm of tc (R2 > 0.96), suggesting that solid-state diffusion processes such as chain-sliding and chain refolding are the dominant cause of lamellar thickening. However, within the α’ phase, hydrogen bonding can be more easily attained, resulting in a more rigid crystal structure that reduces chain mobility and prevents lamellar thickening via chain sliding or refolding. Thickening instead occurs through the incorporation of inter-lamellae amorphous chains, across the melt-crystal interface, via Hay's reptation-diffusion mechanism. This is evidenced by the thickening of α’ crystals becoming dependent on the square root of time (R2 > 0.96). Such insight into the secondary crystallisation behaviour of PA-12 could be useful within the PBF industry in order to help predict the volume shrinkage effects associated with polymer crystallisation, allowing improvements to the dimensional precision and performance of final components. Similarly, an enriched understanding of the mechanisms and rate of secondary crystallisation could reveal more information about the thermal properties of un-sintered PA-12 powder, and its suitability for re-use in future build cycles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Thermochimica Acta
Thermochimica Acta 化学-分析化学
CiteScore
6.50
自引率
8.60%
发文量
210
审稿时长
40 days
期刊介绍: Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application. The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta. The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas: - New and improved instrumentation and methods - Thermal properties and behavior of materials - Kinetics of thermally stimulated processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信