Experimental investigation and crystal plasticity modelling of dynamic recrystallisation in dual-phase high entropy alloy during hot deformation

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zixin Zhou , Yuanming Huo , Zhijun Wang , Eralp Demir , Anqi Jiang , Zhenrong Yan , Tao He
{"title":"Experimental investigation and crystal plasticity modelling of dynamic recrystallisation in dual-phase high entropy alloy during hot deformation","authors":"Zixin Zhou ,&nbsp;Yuanming Huo ,&nbsp;Zhijun Wang ,&nbsp;Eralp Demir ,&nbsp;Anqi Jiang ,&nbsp;Zhenrong Yan ,&nbsp;Tao He","doi":"10.1016/j.msea.2024.147634","DOIUrl":null,"url":null,"abstract":"<div><div>During high-temperature processing, the Ni<sub>61</sub>Fe<sub>10</sub>Cr<sub>10</sub>Al<sub>17</sub>Mo<sub>2</sub> high entropy alloy (HEA) often faces issues with uneven stress distribution and grain size, limiting its industrial applications. This study analyzes the dynamic recrystallisation (DRX) behavior and microstructural evolution of this alloy under high-temperature compression between 1100 °C and 1200 °C. High-temperature compression tests at strain rates of 0.2 and 0.7, combined with characterization techniques, reveal that DRX behavior significantly enhances with increasing temperature. The maximum grain size of 30.3 μm was observed at 1200 °C while the maximum DRX fraction of 53.1 was observed at 1150 °C. In the initial stage of deformation, stress concentrates at the grain boundaries and interface boundary and then propagate to the deformation bands with temperature. The BCC phase undergoes continuous dynamic recrystallisation (CDRX), displaying significant differences from the DRX mechanism of the FCC phase, leading to asynchrony between the two phases during DRX. A crystal plasticity model incorporating dislocation density evolution successfully predicts stress softening and microstructural changes during high-temperature deformation. The initiation of DRX is highly temperature-sensitive, and the distinct mechanisms of the FCC and BCC phases jointly influence grain refinement and texture evolution. These findings provide theoretical support for the thermal processing of HEAs and for understanding their internal changes.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"922 ","pages":"Article 147634"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092150932401565X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

During high-temperature processing, the Ni61Fe10Cr10Al17Mo2 high entropy alloy (HEA) often faces issues with uneven stress distribution and grain size, limiting its industrial applications. This study analyzes the dynamic recrystallisation (DRX) behavior and microstructural evolution of this alloy under high-temperature compression between 1100 °C and 1200 °C. High-temperature compression tests at strain rates of 0.2 and 0.7, combined with characterization techniques, reveal that DRX behavior significantly enhances with increasing temperature. The maximum grain size of 30.3 μm was observed at 1200 °C while the maximum DRX fraction of 53.1 was observed at 1150 °C. In the initial stage of deformation, stress concentrates at the grain boundaries and interface boundary and then propagate to the deformation bands with temperature. The BCC phase undergoes continuous dynamic recrystallisation (CDRX), displaying significant differences from the DRX mechanism of the FCC phase, leading to asynchrony between the two phases during DRX. A crystal plasticity model incorporating dislocation density evolution successfully predicts stress softening and microstructural changes during high-temperature deformation. The initiation of DRX is highly temperature-sensitive, and the distinct mechanisms of the FCC and BCC phases jointly influence grain refinement and texture evolution. These findings provide theoretical support for the thermal processing of HEAs and for understanding their internal changes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信