Portable, quantitative, real-time isothermal nucleic acid amplification test using microfluidic device-coupled UV-LED photodiode detector

IF 10.7 1区 生物学 Q1 BIOPHYSICS
Natish kumar , Monika Kumari , Devtulya Chander , Sandeep Dogra , Asha Chaubey , Suman Chakraborty , Ravi Kumar Arun
{"title":"Portable, quantitative, real-time isothermal nucleic acid amplification test using microfluidic device-coupled UV-LED photodiode detector","authors":"Natish kumar ,&nbsp;Monika Kumari ,&nbsp;Devtulya Chander ,&nbsp;Sandeep Dogra ,&nbsp;Asha Chaubey ,&nbsp;Suman Chakraborty ,&nbsp;Ravi Kumar Arun","doi":"10.1016/j.bios.2025.117194","DOIUrl":null,"url":null,"abstract":"<div><div>We report a stand-alone, automated, fully quantitative, and portable Microfluidics Integrated LED-Photodiode (MILP) sensing technology as a new molecular diagnostic platform for rapid point-of-care nucleic acid testing in real-time. The all-in-one device integrates a paper-based assay for nucleic acid purification using a polymer-based membrane filter, in-situ isothermal amplification, dual-mode optical detection, and fully quantitative signal analysis by capturing the photovoltaic response using electrical polarity and photocurrent measurements. Highly selective photovoltaic cut-offs may readily recognize test-gene-specific variations quantitatively without requiring further auxiliary instrumentation. The on-cartridge limit of detection (LoD) showed 10 copies/μL, which could diagnose SARS-CoV-2 samples with high clinical sensitivity (95%) and specificity (100%) with reference to real-time PCR-based gold-standard benchmark. Our findings emphasize the test's unique advantages for intensive health surveillance, enabling early disease screening, precise severity assessment, and real-time tracking of disease progression in resource-limited settings without the need for extensive and expensive laboratory infrastructure.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"274 ","pages":"Article 117194"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325000685","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We report a stand-alone, automated, fully quantitative, and portable Microfluidics Integrated LED-Photodiode (MILP) sensing technology as a new molecular diagnostic platform for rapid point-of-care nucleic acid testing in real-time. The all-in-one device integrates a paper-based assay for nucleic acid purification using a polymer-based membrane filter, in-situ isothermal amplification, dual-mode optical detection, and fully quantitative signal analysis by capturing the photovoltaic response using electrical polarity and photocurrent measurements. Highly selective photovoltaic cut-offs may readily recognize test-gene-specific variations quantitatively without requiring further auxiliary instrumentation. The on-cartridge limit of detection (LoD) showed 10 copies/μL, which could diagnose SARS-CoV-2 samples with high clinical sensitivity (95%) and specificity (100%) with reference to real-time PCR-based gold-standard benchmark. Our findings emphasize the test's unique advantages for intensive health surveillance, enabling early disease screening, precise severity assessment, and real-time tracking of disease progression in resource-limited settings without the need for extensive and expensive laboratory infrastructure.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信