An integrated stacked convolutional neural network and the levy flight-based grasshopper optimization algorithm for predicting heart disease

Syed Muhammad Salman Bukhari , Muhammad Hamza Zafar , Syed Kumayl Raza Moosavi , Majad Mansoor , Filippo Sanfilippo
{"title":"An integrated stacked convolutional neural network and the levy flight-based grasshopper optimization algorithm for predicting heart disease","authors":"Syed Muhammad Salman Bukhari ,&nbsp;Muhammad Hamza Zafar ,&nbsp;Syed Kumayl Raza Moosavi ,&nbsp;Majad Mansoor ,&nbsp;Filippo Sanfilippo","doi":"10.1016/j.health.2024.100374","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular disease is the leading cause of death worldwide, including critical conditions such as blood vessel blockage, heart failure, and stroke. Accurate and early prediction of heart disease remains a significant challenge due to the complexity of symptoms and the variability of contributing factors. This study proposes a novel hybrid model integrating a Stacked Convolutional Neural Network (SCNN) with the Levy Flight-based Grasshopper Optimization Algorithm (LFGOA) to address this challenge. The SCNN provides robust feature extraction, while LFGOA enhances the model by optimizing hyperparameters, improving classification accuracy, and reducing overfitting. The proposed approach is evaluated using four publicly available heart disease datasets, each representing diverse clinical and demographic features. Compared to traditional classifiers, including Regression Trees, Support Vector Machine, Logistic Regression, K-Nearest Neighbors, and standard Neural Networks, the SCNN-LFGOA consistently outperforms these methods. The results highlight that the SCNN-LFGOA achieves an average accuracy of 99%, with significant improvements in specificity, sensitivity, and F1-Score, showcasing its adaptability and robustness across datasets. This study highlights the SCNN-LFGOA's potential as a transformative tool for early and accurate heart disease prediction, contributing to improved patient outcomes and more efficient healthcare resource utilization. By combining deep learning with an advanced optimization technique, this research introduces a scalable and effective solution to a critical healthcare problem.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"7 ","pages":"Article 100374"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular disease is the leading cause of death worldwide, including critical conditions such as blood vessel blockage, heart failure, and stroke. Accurate and early prediction of heart disease remains a significant challenge due to the complexity of symptoms and the variability of contributing factors. This study proposes a novel hybrid model integrating a Stacked Convolutional Neural Network (SCNN) with the Levy Flight-based Grasshopper Optimization Algorithm (LFGOA) to address this challenge. The SCNN provides robust feature extraction, while LFGOA enhances the model by optimizing hyperparameters, improving classification accuracy, and reducing overfitting. The proposed approach is evaluated using four publicly available heart disease datasets, each representing diverse clinical and demographic features. Compared to traditional classifiers, including Regression Trees, Support Vector Machine, Logistic Regression, K-Nearest Neighbors, and standard Neural Networks, the SCNN-LFGOA consistently outperforms these methods. The results highlight that the SCNN-LFGOA achieves an average accuracy of 99%, with significant improvements in specificity, sensitivity, and F1-Score, showcasing its adaptability and robustness across datasets. This study highlights the SCNN-LFGOA's potential as a transformative tool for early and accurate heart disease prediction, contributing to improved patient outcomes and more efficient healthcare resource utilization. By combining deep learning with an advanced optimization technique, this research introduces a scalable and effective solution to a critical healthcare problem.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信