Impact of lattice distortion and vacancies on magnetism and magnetocaloric effect in Ho3BxC4-x compounds for hydrogen liquefaction

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lu Tian , Zhenxing Li , Haobo Sun , Zhaojun Mo , Jun Liu , Guodong Liu , Jun Shen
{"title":"Impact of lattice distortion and vacancies on magnetism and magnetocaloric effect in Ho3BxC4-x compounds for hydrogen liquefaction","authors":"Lu Tian ,&nbsp;Zhenxing Li ,&nbsp;Haobo Sun ,&nbsp;Zhaojun Mo ,&nbsp;Jun Liu ,&nbsp;Guodong Liu ,&nbsp;Jun Shen","doi":"10.1016/j.mtla.2025.102339","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen is increasingly recognized as a clean and sustainable energy carrier, essential for the transition to a low-carbon economy. Efficient storage and transportation of hydrogen necessitate its liquefaction, which requires extremely low temperatures. Traditional hydrogen liquefaction methods, such as the Claude cycle based on Joule-Thomson expansion, are energy-intensive and complex. This study successfully synthesizes Ho<sub>3</sub>B<sub>x</sub>C<sub>4-x</sub> compounds and systematically investigates their crystal structure, electronic structure, magnetic properties, and magnetocaloric effects (MCEs). Through a combination of theoretical calculations and experimental validation, we explore the impact of precise elemental regulation on the magnetocaloric properties of these compounds. Our findings demonstrate that adjusting the boron and carbon content significantly enhances the MCE and effectively controls the magnetic transition temperature. This improvement is attributed to the synergistic effects of lattice distortion, electronic structure modifications, and lattice vacancies. Additionally, varying the carbon content modifies lattice vacancies, further optimizing the magnetic transition temperature. These results present a novel approach for developing sustainable cooling technologies. Furthermore, the tunable elemental composition allows for targeted adjustments to meet specific cooling requirements, thereby broadening the application scope of these materials.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"39 ","pages":"Article 102339"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152925000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen is increasingly recognized as a clean and sustainable energy carrier, essential for the transition to a low-carbon economy. Efficient storage and transportation of hydrogen necessitate its liquefaction, which requires extremely low temperatures. Traditional hydrogen liquefaction methods, such as the Claude cycle based on Joule-Thomson expansion, are energy-intensive and complex. This study successfully synthesizes Ho3BxC4-x compounds and systematically investigates their crystal structure, electronic structure, magnetic properties, and magnetocaloric effects (MCEs). Through a combination of theoretical calculations and experimental validation, we explore the impact of precise elemental regulation on the magnetocaloric properties of these compounds. Our findings demonstrate that adjusting the boron and carbon content significantly enhances the MCE and effectively controls the magnetic transition temperature. This improvement is attributed to the synergistic effects of lattice distortion, electronic structure modifications, and lattice vacancies. Additionally, varying the carbon content modifies lattice vacancies, further optimizing the magnetic transition temperature. These results present a novel approach for developing sustainable cooling technologies. Furthermore, the tunable elemental composition allows for targeted adjustments to meet specific cooling requirements, thereby broadening the application scope of these materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信