Peng Wu , Shiyong Sun , Ligang Zhou , Yao Yao , Muhammet Deveci
{"title":"Platforms empower: Mining online reviews for supporting consumers decisions","authors":"Peng Wu , Shiyong Sun , Ligang Zhou , Yao Yao , Muhammet Deveci","doi":"10.1016/j.jretconser.2024.104214","DOIUrl":null,"url":null,"abstract":"<div><div>With the progress of information technology, various platforms have emerged and rapidly developed. In product recommendation platforms, online reviews generated by consumers, as a key source of information, exert a substantial influence on purchasing decisions made by consumers. Although prior research has made some progress in this field, there is still a lack of exploration on the types of reviews information, the sentiment tendencies, and consumer decision-making behavior. Guided by text mining techniques and behavioral decision theory, this paper develops a heterogeneous data-driven decision-support model to more comprehensively extract information from online reviews and gain insights into consumer purchasing behavior. To handle the heterogeneity of online reviews, sentiment analysis is conducted to convert unstructured text data into sentiment values with structurization. Thereafter, a three-stage heterogeneous data aggregation framework is developed to define overall evaluation by fusing unstructured text reviews and structured star ratings. After defining a new attribute called word-of-mouth effect (WoME) based on interactive behavior data (such as views, likes and replies), we present a product ranking method by integrating regret theory and the logarithmic TODIM (LogTODIM) method. Furthermore, a case study is presented that evaluates the ranking of new energy vehicles (NEVs) on the Autohome platform, thereby verifying the feasibility of the proposed model.</div></div>","PeriodicalId":48399,"journal":{"name":"Journal of Retailing and Consumer Services","volume":"84 ","pages":"Article 104214"},"PeriodicalIF":11.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Retailing and Consumer Services","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969698924005101","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
With the progress of information technology, various platforms have emerged and rapidly developed. In product recommendation platforms, online reviews generated by consumers, as a key source of information, exert a substantial influence on purchasing decisions made by consumers. Although prior research has made some progress in this field, there is still a lack of exploration on the types of reviews information, the sentiment tendencies, and consumer decision-making behavior. Guided by text mining techniques and behavioral decision theory, this paper develops a heterogeneous data-driven decision-support model to more comprehensively extract information from online reviews and gain insights into consumer purchasing behavior. To handle the heterogeneity of online reviews, sentiment analysis is conducted to convert unstructured text data into sentiment values with structurization. Thereafter, a three-stage heterogeneous data aggregation framework is developed to define overall evaluation by fusing unstructured text reviews and structured star ratings. After defining a new attribute called word-of-mouth effect (WoME) based on interactive behavior data (such as views, likes and replies), we present a product ranking method by integrating regret theory and the logarithmic TODIM (LogTODIM) method. Furthermore, a case study is presented that evaluates the ranking of new energy vehicles (NEVs) on the Autohome platform, thereby verifying the feasibility of the proposed model.
期刊介绍:
The Journal of Retailing and Consumer Services is a prominent publication that serves as a platform for international and interdisciplinary research and discussions in the constantly evolving fields of retailing and services studies. With a specific emphasis on consumer behavior and policy and managerial decisions, the journal aims to foster contributions from academics encompassing diverse disciplines. The primary areas covered by the journal are:
Retailing and the sale of goods
The provision of consumer services, including transportation, tourism, and leisure.