Revisiting the microwave spectrum and molecular structure of 1-fluoronaphthalene

IF 1.4 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Surabhi Gupta , Charlotte N. Cummings , Nicholas R. Walker , Elangannan Arunan
{"title":"Revisiting the microwave spectrum and molecular structure of 1-fluoronaphthalene","authors":"Surabhi Gupta ,&nbsp;Charlotte N. Cummings ,&nbsp;Nicholas R. Walker ,&nbsp;Elangannan Arunan","doi":"10.1016/j.jms.2024.111968","DOIUrl":null,"url":null,"abstract":"<div><div>Rotational spectra of 1-fluoronaphthalene isotopologues have been recorded using a chirped-pulse Fourier transform microwave spectrometer in the 2.0–8.0 GHz frequency range using neon as a carrier gas. Ten <sup>13</sup>C isotopomers (each containing only a single <sup>12</sup>C/<sup>13</sup>C substitution) of 1-fluoronaphthalene have been assigned in natural abundance for the first time. The rotational constants <em>A</em><sub>0</sub>, <em>B</em><sub>0</sub>, and <em>C</em><sub>0</sub> and inertial defects are determined from experimentally measured transition frequencies. For all isotopologues, the measured values of inertial defects were observed to fall within the range from −0.142 to −0.145 u Å<sup>2</sup>. The negative inertial defects are attributed to the low frequency, out-of-plane bending mode of the 1-fluoronaphthalene ring, which is evidently of similar frequency in each isotopologue. The anharmonic frequency of this mode has been calculated to be 142.8 cm<sup>−1</sup> at the B3LYP-D3/cc-pVTZ level of theory, compared to 94 cm<sup>−1</sup> predicted from the inertial defect based on an empirical relation proposed by Oka. Recent, unpublished, THz Raman spectrum reveals a peak at 75 cm<sup>−1</sup>, which is closer to the empirical prediction.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"407 ","pages":"Article 111968"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002228522400095X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rotational spectra of 1-fluoronaphthalene isotopologues have been recorded using a chirped-pulse Fourier transform microwave spectrometer in the 2.0–8.0 GHz frequency range using neon as a carrier gas. Ten 13C isotopomers (each containing only a single 12C/13C substitution) of 1-fluoronaphthalene have been assigned in natural abundance for the first time. The rotational constants A0, B0, and C0 and inertial defects are determined from experimentally measured transition frequencies. For all isotopologues, the measured values of inertial defects were observed to fall within the range from −0.142 to −0.145 u Å2. The negative inertial defects are attributed to the low frequency, out-of-plane bending mode of the 1-fluoronaphthalene ring, which is evidently of similar frequency in each isotopologue. The anharmonic frequency of this mode has been calculated to be 142.8 cm−1 at the B3LYP-D3/cc-pVTZ level of theory, compared to 94 cm−1 predicted from the inertial defect based on an empirical relation proposed by Oka. Recent, unpublished, THz Raman spectrum reveals a peak at 75 cm−1, which is closer to the empirical prediction.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
21.40%
发文量
94
审稿时长
29 days
期刊介绍: The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信