Joshua Heuvel-Horwitz , Eisen C. Gross , Trevor J. Sears
{"title":"Python control of a high-resolution near-infrared spectrometer for undergraduate use","authors":"Joshua Heuvel-Horwitz , Eisen C. Gross , Trevor J. Sears","doi":"10.1016/j.jms.2024.111983","DOIUrl":null,"url":null,"abstract":"<div><div>We describe a project designed to introduce senior undergraduate chemistry and physics majors to the use of more advanced laser spectroscopic techniques and the interpretation of spectroscopic line shapes. We present a spectrometer design comprising modular components that are controlled using a single Python program with a graphical user interface (GUI). Unlike commercial Fourier transform infrared spectrometers typically used in undergraduate laboratories, this instrument can measure much higher resolution (approximately 0.001 cm<sup>−1</sup> compared to 0.5 cm<sup>−1</sup>) data, with significantly higher (10<sup>−4</sup>) fractional absorption sensitivity. The modular, open<span><math><mo>−</mo></math></span>table design allows for easy viewing of optical components and better understanding of the operation of the instrument. We demonstrate the functionality of the spectrometer by measuring the P(23) rotational-vibrational line of the <span><math><mrow><msub><mrow><mi>ν</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>ν</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> combination band of acetylene at various pressures to extract a self-pressure broadening coefficient. An undergraduate laboratory assignment could also include estimating the Boltzmann constant from data for low pressure Doppler-broadened lines. An additional Python program with a GUI was built for user friendly least squares fitting of collected data. All Python codes developed are freely available on GitLab.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"407 ","pages":"Article 111983"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285224001103","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We describe a project designed to introduce senior undergraduate chemistry and physics majors to the use of more advanced laser spectroscopic techniques and the interpretation of spectroscopic line shapes. We present a spectrometer design comprising modular components that are controlled using a single Python program with a graphical user interface (GUI). Unlike commercial Fourier transform infrared spectrometers typically used in undergraduate laboratories, this instrument can measure much higher resolution (approximately 0.001 cm−1 compared to 0.5 cm−1) data, with significantly higher (10−4) fractional absorption sensitivity. The modular, opentable design allows for easy viewing of optical components and better understanding of the operation of the instrument. We demonstrate the functionality of the spectrometer by measuring the P(23) rotational-vibrational line of the combination band of acetylene at various pressures to extract a self-pressure broadening coefficient. An undergraduate laboratory assignment could also include estimating the Boltzmann constant from data for low pressure Doppler-broadened lines. An additional Python program with a GUI was built for user friendly least squares fitting of collected data. All Python codes developed are freely available on GitLab.
期刊介绍:
The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.