Shuo Zhao , Jie Gao , Yongqi Wu , Rui Zhu , Mu Li , Wanyi Qin , Xijun Wu , Yungang Zhang
{"title":"Measurement of O2 and O3 absorption cross-sections in the 180–270 nm by controlling the conversion of O2 to O3 in the linear-absorption region","authors":"Shuo Zhao , Jie Gao , Yongqi Wu , Rui Zhu , Mu Li , Wanyi Qin , Xijun Wu , Yungang Zhang","doi":"10.1016/j.jms.2024.111984","DOIUrl":null,"url":null,"abstract":"<div><div>Oxygen (O<sub>2</sub>) and ozone (O<sub>3</sub>) are of crucial importance to human health and environmental sustainability. Concentrations of O<sub>2</sub> and O<sub>3</sub> can be measured by UV absorption spectroscopy, in which the absorption cross-section (ACS) is a very critical physical parameter for calculating concentrations. However, the existing ACS of O<sub>2</sub> and O<sub>3</sub> are biased because the conversion of O<sub>2</sub> to O<sub>3</sub> and nonlinear effects in absorption are ignored in the measurement of ACS. In this study, the ACS for O<sub>2</sub> and O<sub>3</sub> are obtained by considering the conversion of O<sub>2</sub> to O<sub>3</sub> and the nonlinear effects. First, the conversion of O<sub>2</sub> to O<sub>3</sub> is inhibited by controlling gas flow rate and light intensity in the measurement of O<sub>2</sub> and O<sub>3</sub> ACS. Then the concentration of O<sub>3</sub> is indirectly calculated by controlling conversion of O<sub>2</sub> to O<sub>3</sub> during the measurement of ACS of O<sub>3</sub>. Next, the linear-absorption regions for O<sub>2</sub> and O<sub>3</sub> are determined by constructing the relationship between absorption intensities and concentrations to eliminate the influence of nonlinear effect. The maximum ACS for oxygen and ozone are <span><math><mrow><mn>7.84</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>20</mn></mrow></msup></mrow></math></span> cm<sup>2</sup>/molecule (<span><math><mrow><mi>λ</mi></mrow></math></span> = 180.51 nm) and <span><math><mrow><mn>1.32</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>17</mn></mrow></msup></mrow></math></span> cm<sup>2</sup>/molecule (<span><math><mrow><mi>λ</mi></mrow></math></span> = 255.39 nm) by controlling conversion of O<sub>2</sub> to O<sub>3</sub> in the linear-absorption region, respectively.</div></div>","PeriodicalId":16367,"journal":{"name":"Journal of Molecular Spectroscopy","volume":"407 ","pages":"Article 111984"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Spectroscopy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022285224001115","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oxygen (O2) and ozone (O3) are of crucial importance to human health and environmental sustainability. Concentrations of O2 and O3 can be measured by UV absorption spectroscopy, in which the absorption cross-section (ACS) is a very critical physical parameter for calculating concentrations. However, the existing ACS of O2 and O3 are biased because the conversion of O2 to O3 and nonlinear effects in absorption are ignored in the measurement of ACS. In this study, the ACS for O2 and O3 are obtained by considering the conversion of O2 to O3 and the nonlinear effects. First, the conversion of O2 to O3 is inhibited by controlling gas flow rate and light intensity in the measurement of O2 and O3 ACS. Then the concentration of O3 is indirectly calculated by controlling conversion of O2 to O3 during the measurement of ACS of O3. Next, the linear-absorption regions for O2 and O3 are determined by constructing the relationship between absorption intensities and concentrations to eliminate the influence of nonlinear effect. The maximum ACS for oxygen and ozone are cm2/molecule ( = 180.51 nm) and cm2/molecule ( = 255.39 nm) by controlling conversion of O2 to O3 in the linear-absorption region, respectively.
期刊介绍:
The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice.