Collaborative planning of multi-energy systems integrating complete hydrogen energy chain

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS
Xinning Yi , Tianguang Lu , Yixiao Li , Qian Ai , Ran Hao
{"title":"Collaborative planning of multi-energy systems integrating complete hydrogen energy chain","authors":"Xinning Yi ,&nbsp;Tianguang Lu ,&nbsp;Yixiao Li ,&nbsp;Qian Ai ,&nbsp;Ran Hao","doi":"10.1016/j.rser.2024.115147","DOIUrl":null,"url":null,"abstract":"<div><div>Under the global low-carbon target, hydrogen is essential to address uneven energy spatial distribution and seasonal energy imbalances. However, the issues of insufficient energy interaction between different links (e.g., production, storage, and application) of hydrogen in planning models hinder the full hydrogen exploitation. This study proposes the concept of a complete hydrogen energy chain covering the energy flows of all the links and optimizes the hydrogen chain-based energy system’s bottom-up long-term investment strategy. It aims to facilitate the transfer of multiple energy flows across time and space for renewable energy efficient consumption. Firstly, a hydrogen chain-based fast clustering optimization method is proposed to deal with high-dimensional data to achieve a fast solution for large-scale long-term planning. Secondly, a high-resolution collaborative planning model of the multi-energy systems integrating the complete hydrogen energy chain is proposed, considering the renewable energy spatiotemporal distribution characteristics and annual hourly operation. Finally, this study thoroughly examines the optimal portfolio selection of different hydrogen technologies based on the differences in cost, flexibility, and efficiency. Taking Northeast China in 2050 as an example, the results show that: The proposed model reduces CO<sub>2</sub> emissions by 60 % with 30 % additional cost in Pareto analysis. At zero-carbon emissions, integrating the complete hydrogen energy chain reduces the renewable energy curtailment by 97.0 %. Meanwhile, the energy system prefers the electrolysis cells with the highest energy efficiency and the fuel cells with the fastest dynamic response. This study provides future energy system planning guidance for countries or regions to realize low-carbon targets.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"210 ","pages":"Article 115147"},"PeriodicalIF":16.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124008736","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Under the global low-carbon target, hydrogen is essential to address uneven energy spatial distribution and seasonal energy imbalances. However, the issues of insufficient energy interaction between different links (e.g., production, storage, and application) of hydrogen in planning models hinder the full hydrogen exploitation. This study proposes the concept of a complete hydrogen energy chain covering the energy flows of all the links and optimizes the hydrogen chain-based energy system’s bottom-up long-term investment strategy. It aims to facilitate the transfer of multiple energy flows across time and space for renewable energy efficient consumption. Firstly, a hydrogen chain-based fast clustering optimization method is proposed to deal with high-dimensional data to achieve a fast solution for large-scale long-term planning. Secondly, a high-resolution collaborative planning model of the multi-energy systems integrating the complete hydrogen energy chain is proposed, considering the renewable energy spatiotemporal distribution characteristics and annual hourly operation. Finally, this study thoroughly examines the optimal portfolio selection of different hydrogen technologies based on the differences in cost, flexibility, and efficiency. Taking Northeast China in 2050 as an example, the results show that: The proposed model reduces CO2 emissions by 60 % with 30 % additional cost in Pareto analysis. At zero-carbon emissions, integrating the complete hydrogen energy chain reduces the renewable energy curtailment by 97.0 %. Meanwhile, the energy system prefers the electrolysis cells with the highest energy efficiency and the fuel cells with the fastest dynamic response. This study provides future energy system planning guidance for countries or regions to realize low-carbon targets.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信