Kernel density estimation of egg attachment areas aids in revealing spatiotemporal changes in Chinese sturgeon spawning grounds

IF 5.1 Q1 ENVIRONMENTAL SCIENCES
Pengsheng Li , Xuan Ban , Jinming Wu , Hui Zhang , Junyi Li , Li Shen , Zhigang Liu , Hao Du
{"title":"Kernel density estimation of egg attachment areas aids in revealing spatiotemporal changes in Chinese sturgeon spawning grounds","authors":"Pengsheng Li ,&nbsp;Xuan Ban ,&nbsp;Jinming Wu ,&nbsp;Hui Zhang ,&nbsp;Junyi Li ,&nbsp;Li Shen ,&nbsp;Zhigang Liu ,&nbsp;Hao Du","doi":"10.1016/j.watbs.2024.100311","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying precise egg attachment areas and tracking trends of spawning magnitude (total amount of spawned eggs) are critical for accurate habitat assessment and effective conservation efforts, especially for lithophilic spawning fishes. However, accurate measurement of spawning conditions across both spatial and temporal dimensions poses significant challenges. We conducted a fourteen-year field study below the Gezhouba Dam, the main spawning ground for the Chinese sturgeon, using Kernel Density Estimation (KDE) method and Catch per Unit of Effort (<em>CPUE</em>) to refine knowledge on egg attachment areas relative to previous assessments. In addition, our analysis documented shifts in spawning locations within these four areas over the past fourteen years, revealing a worrying trend of decreasing spawning magnitude. This approach not only enabled the incorporation of the density distribution of eggs into the assessment of spawning magnitude trends, but also underscored the potential of the KDE as a framework for identifying egg attachment areas and estimating spawning magnitude trends. Our results provide valuable insights into spawning degradation of Chinese sturgeon and inform conservation strategies to protect their fragile spawning grounds.</div></div>","PeriodicalId":101277,"journal":{"name":"Water Biology and Security","volume":"4 1","pages":"Article 100311"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Biology and Security","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772735124000830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying precise egg attachment areas and tracking trends of spawning magnitude (total amount of spawned eggs) are critical for accurate habitat assessment and effective conservation efforts, especially for lithophilic spawning fishes. However, accurate measurement of spawning conditions across both spatial and temporal dimensions poses significant challenges. We conducted a fourteen-year field study below the Gezhouba Dam, the main spawning ground for the Chinese sturgeon, using Kernel Density Estimation (KDE) method and Catch per Unit of Effort (CPUE) to refine knowledge on egg attachment areas relative to previous assessments. In addition, our analysis documented shifts in spawning locations within these four areas over the past fourteen years, revealing a worrying trend of decreasing spawning magnitude. This approach not only enabled the incorporation of the density distribution of eggs into the assessment of spawning magnitude trends, but also underscored the potential of the KDE as a framework for identifying egg attachment areas and estimating spawning magnitude trends. Our results provide valuable insights into spawning degradation of Chinese sturgeon and inform conservation strategies to protect their fragile spawning grounds.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信