Virtual screening, in silico pharmacokinetic and toxicity profiling of colchicine-based inhibitors of estrogen receptor of breast cancer

Q1 Environmental Science
Philip John Ameji , Amneh Shtaiwi , Rohana Adnan
{"title":"Virtual screening, in silico pharmacokinetic and toxicity profiling of colchicine-based inhibitors of estrogen receptor of breast cancer","authors":"Philip John Ameji ,&nbsp;Amneh Shtaiwi ,&nbsp;Rohana Adnan","doi":"10.1016/j.toxrep.2025.101926","DOIUrl":null,"url":null,"abstract":"<div><div>The declining efficacies of existing drugs against estrogen receptor positive (ER+) breast cancer due to multidrug resistance, acute toxicities, and poor pharmacokinetic properties has necessitated the discovery of newer ones. In this study, colchicine analogues with proven <em>in vitro</em> activities against breast cancer cells were screened against estrogen receptor alpha (ERα) <em>via</em> molecular docking simulations to identify some promising drug candidates. The identified ligands were further subjected to MM/GBSA calculations to ascertain their solvation-dependent Gibb’s free energy of binding (∆G<sub>B</sub>). Three most promising ligands (MPLs); 12, 16, and 21 with ∆G<sub>B</sub> values of − 40.37, − 40.31, and − 40.26 kcal/mol, respectively, were identified. When compared with tamoxifen (standard drug) whose ∆G<sub>B</sub> value is − 38.66 kcal/mol, the MPLs appear more potent. The kinetic stabilities of 12, 16, and 21 were confirmed by DFT (B3LYP/6-31G*) calculations and the time-dependent thermodynamic stabilities of their complexes with ERα were established by molecular dynamic simulations. In addition, the MPLs display positive pharmacokinetic and toxicity profiles and could be excellent sources of potent and non-toxic drug candidates against ER+ breast carcinoma.</div></div>","PeriodicalId":23129,"journal":{"name":"Toxicology Reports","volume":"14 ","pages":"Article 101926"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214750025000447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The declining efficacies of existing drugs against estrogen receptor positive (ER+) breast cancer due to multidrug resistance, acute toxicities, and poor pharmacokinetic properties has necessitated the discovery of newer ones. In this study, colchicine analogues with proven in vitro activities against breast cancer cells were screened against estrogen receptor alpha (ERα) via molecular docking simulations to identify some promising drug candidates. The identified ligands were further subjected to MM/GBSA calculations to ascertain their solvation-dependent Gibb’s free energy of binding (∆GB). Three most promising ligands (MPLs); 12, 16, and 21 with ∆GB values of − 40.37, − 40.31, and − 40.26 kcal/mol, respectively, were identified. When compared with tamoxifen (standard drug) whose ∆GB value is − 38.66 kcal/mol, the MPLs appear more potent. The kinetic stabilities of 12, 16, and 21 were confirmed by DFT (B3LYP/6-31G*) calculations and the time-dependent thermodynamic stabilities of their complexes with ERα were established by molecular dynamic simulations. In addition, the MPLs display positive pharmacokinetic and toxicity profiles and could be excellent sources of potent and non-toxic drug candidates against ER+ breast carcinoma.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxicology Reports
Toxicology Reports Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
7.60
自引率
0.00%
发文量
228
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信