Enhancing performance and stability of perovskite solar cells via CsPbBr3 nanocrystal-assisted antisolvent engineering

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jaewon Oh , Sung Hun Kim , Seungsun Choi , Muntae Hwang , Hyunbok Lee , Hong Seok Lee , Mee-Yi Ryu
{"title":"Enhancing performance and stability of perovskite solar cells via CsPbBr3 nanocrystal-assisted antisolvent engineering","authors":"Jaewon Oh ,&nbsp;Sung Hun Kim ,&nbsp;Seungsun Choi ,&nbsp;Muntae Hwang ,&nbsp;Hyunbok Lee ,&nbsp;Hong Seok Lee ,&nbsp;Mee-Yi Ryu","doi":"10.1016/j.cap.2024.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>Organic–inorganic halide perovskites show great potential, but their commercialization faces challenges due to instability, requiring controlled synthesis environments. Antisolvent engineering offers a solution by improving the formation of perovskite films under ambient conditions. In this study, CsPbBr<sub>3</sub> nanocrystals (NCs) were added to the antisolvent to enhance the performance and stability of perovskite solar cells (PSCs). By optimizing the NC concentration and the mixing ratio of antisolvents, we systematically examined their impact on film deposition. The inclusion of CsPbBr<sub>3</sub> NCs improved PSC efficiency, with the highest power conversion efficiency of 19.99 % achieved at 0.01 mg/mL NC concentration. Additionally, NC-added films demonstrated better long-term stability, losing only 12.5 % efficiency after 80 days compared to a 47.1 % loss in pristine films. These results highlight the potential of NC-assisted antisolvent engineering for producing stable, high-performance PSCs.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"71 ","pages":"Pages 37-45"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002864","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic–inorganic halide perovskites show great potential, but their commercialization faces challenges due to instability, requiring controlled synthesis environments. Antisolvent engineering offers a solution by improving the formation of perovskite films under ambient conditions. In this study, CsPbBr3 nanocrystals (NCs) were added to the antisolvent to enhance the performance and stability of perovskite solar cells (PSCs). By optimizing the NC concentration and the mixing ratio of antisolvents, we systematically examined their impact on film deposition. The inclusion of CsPbBr3 NCs improved PSC efficiency, with the highest power conversion efficiency of 19.99 % achieved at 0.01 mg/mL NC concentration. Additionally, NC-added films demonstrated better long-term stability, losing only 12.5 % efficiency after 80 days compared to a 47.1 % loss in pristine films. These results highlight the potential of NC-assisted antisolvent engineering for producing stable, high-performance PSCs.

Abstract Image

利用CsPbBr3纳米晶辅助抗溶剂工程提高钙钛矿太阳能电池的性能和稳定性
有机-无机卤化物钙钛矿显示出巨大的潜力,但由于其不稳定,需要可控的合成环境,其商业化面临挑战。反溶剂工程通过改善钙钛矿薄膜在环境条件下的形成提供了一种解决方案。本研究将CsPbBr3纳米晶体(NCs)加入到抗溶剂中,以提高钙钛矿太阳能电池(PSCs)的性能和稳定性。通过优化NC浓度和反溶剂的混合比例,系统地考察了它们对薄膜沉积的影响。CsPbBr3 NCs的加入提高了PSC的效率,在0.01 mg/mL NC浓度下,PSC的功率转换效率最高,达到19.99%。此外,添加nc的薄膜表现出更好的长期稳定性,80天后效率仅下降12.5%,而原始薄膜的效率下降47.1%。这些结果突出了nc辅助抗溶剂工程在生产稳定、高性能psc方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信