Juan Baz , Pedro Alonso , Juan Manuel Peña , Raúl Pérez-Fernández
{"title":"Estimation of the covariance matrix of a Gaussian Markov Random Field under a total positivity constraint","authors":"Juan Baz , Pedro Alonso , Juan Manuel Peña , Raúl Pérez-Fernández","doi":"10.1016/j.cam.2025.116543","DOIUrl":null,"url":null,"abstract":"<div><div>Gaussian Markov Random Fields are a popular statistical model that has been used successfully in many fields of application. Recent work has studied conditions under which the covariance matrix of a Gaussian Markov Random Field over a graph of paths is totally positive. In such case, many linear algebra operations concerning the covariance matrix can be performed with High Relative Accuracy (the relative error is of order of machine precision). Unfortunately, classical estimators of the covariance matrix do not necessarily yield a totally positive matrix, even when the population covariance matrix is totally positive. Essentially, this inconvenience prevents the available High Relative Accuracy methods to be used with real-life data. Here, we present a method for the estimation of the covariance matrix of a Gaussian Markov Random Field over a graph of paths assuring the estimated covariance matrix (or its inverse) is totally positive.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"464 ","pages":"Article 116543"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725000585","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Gaussian Markov Random Fields are a popular statistical model that has been used successfully in many fields of application. Recent work has studied conditions under which the covariance matrix of a Gaussian Markov Random Field over a graph of paths is totally positive. In such case, many linear algebra operations concerning the covariance matrix can be performed with High Relative Accuracy (the relative error is of order of machine precision). Unfortunately, classical estimators of the covariance matrix do not necessarily yield a totally positive matrix, even when the population covariance matrix is totally positive. Essentially, this inconvenience prevents the available High Relative Accuracy methods to be used with real-life data. Here, we present a method for the estimation of the covariance matrix of a Gaussian Markov Random Field over a graph of paths assuring the estimated covariance matrix (or its inverse) is totally positive.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.