A note on the random triadic process

IF 0.7 3区 数学 Q2 MATHEMATICS
Fang Tian , Yiting Yang
{"title":"A note on the random triadic process","authors":"Fang Tian ,&nbsp;Yiting Yang","doi":"10.1016/j.disc.2024.114374","DOIUrl":null,"url":null,"abstract":"<div><div>For a fixed integer <span><math><mi>r</mi><mo>⩾</mo><mn>3</mn></math></span>, let <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> be a random <em>r</em>-uniform hypergraph on the vertex set <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>, where each <em>r</em>-set is an edge randomly and independently with probability <em>p</em>. The random <em>r</em>-generalized triadic process starts with a complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>+</mo><mn>2</mn></mrow></msub></math></span> on the same vertex set, chooses two distinct vertices <em>x</em> and <em>y</em> uniformly at random and iteratively adds <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>}</mo></math></span> as an edge if there is a subset <em>Z</em> with size <span><math><mi>r</mi><mo>−</mo><mn>2</mn></math></span>, denoted as <span><math><mi>Z</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span>, such that <span><math><mo>{</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> and <span><math><mo>{</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></math></span> for <span><math><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi><mo>−</mo><mn>2</mn></math></span> are already edges in the graph and <span><math><mo>{</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>z</mi></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msub><mo>}</mo></math></span> is an edge in <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>. The random triadic process is an abbreviation for the random 3-generalized triadic process. Korándi et al. proved a sharp threshold probability for the propagation of the random triadic process, that is, if <span><math><mi>p</mi><mo>=</mo><mi>c</mi><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></math></span> for some positive constant <em>c</em>, with high probability, the triadic process reaches the complete graph when <span><math><mi>c</mi><mo>&gt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and stops at <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span> edges when <span><math><mi>c</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. In this note, we consider the final size of the random <em>r</em>-generalized triadic process when <span><math><mi>p</mi><mo>=</mo><mi>o</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mi>α</mi><mo>(</mo><mn>3</mn><mo>−</mo><mi>r</mi><mo>)</mo></mrow></msup><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> with a constant <span><math><mi>α</mi><mo>&gt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>. We show that the generated graph of the process essentially behaves like <span><math><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span>. The final number of added edges in the process, with high probability, equals <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>p</mi><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span> provided that <span><math><mi>p</mi><mo>=</mo><mi>ω</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>. The results partially complement the ones on the case of <span><math><mi>r</mi><mo>=</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114374"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24005053","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a fixed integer r3, let Hr(n,p) be a random r-uniform hypergraph on the vertex set [n], where each r-set is an edge randomly and independently with probability p. The random r-generalized triadic process starts with a complete bipartite graph Kr2,nr+2 on the same vertex set, chooses two distinct vertices x and y uniformly at random and iteratively adds {x,y} as an edge if there is a subset Z with size r2, denoted as Z={z1,,zr2}, such that {x,zi} and {y,zi} for 1ir2 are already edges in the graph and {x,y,z1,,zr2} is an edge in Hr(n,p). The random triadic process is an abbreviation for the random 3-generalized triadic process. Korándi et al. proved a sharp threshold probability for the propagation of the random triadic process, that is, if p=cn12 for some positive constant c, with high probability, the triadic process reaches the complete graph when c>12 and stops at O(n32) edges when c<12. In this note, we consider the final size of the random r-generalized triadic process when p=o(n12logα(3r)n) with a constant α>12. We show that the generated graph of the process essentially behaves like G(n,p). The final number of added edges in the process, with high probability, equals 12n2p(1+o(1)) provided that p=ω(n2). The results partially complement the ones on the case of r=3.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信