Monochromatic cycles in 2-edge-colored bipartite graphs with large minimum degree

IF 0.7 3区 数学 Q2 MATHEMATICS
Yiran Zhang , Yuejian Peng
{"title":"Monochromatic cycles in 2-edge-colored bipartite graphs with large minimum degree","authors":"Yiran Zhang ,&nbsp;Yuejian Peng","doi":"10.1016/j.disc.2024.114363","DOIUrl":null,"url":null,"abstract":"<div><div>For graphs <em>G</em>, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, we write <span><math><mi>G</mi><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> if any red-blue edge coloring of <em>G</em> yields a red <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or a blue <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The <em>Ramsey number</em> <span><math><mi>r</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is the minimum number <em>n</em> such that the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. There is an interesting phenomenon that for some graphs <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> there is a number <span><math><mn>0</mn><mo>&lt;</mo><mi>c</mi><mo>&lt;</mo><mn>1</mn></math></span> such that for any graph <em>G</em> of order <span><math><mi>r</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> with minimum degree <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>&gt;</mo><mi>c</mi><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>, <span><math><mi>G</mi><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. When we focus on bipartite graphs, the <em>bipartite Ramsey number</em> <span><math><mi>b</mi><mi>r</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is the minimum number <em>n</em> such that the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Previous known related results on cycles are on the diagonal case (<span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span>). In this paper, we obtain an asymptotically tight bound for all off-diagonal cases, namely, we determine an asymptotically tight bound on the minimum degree of a balanced bipartite graph <em>G</em> with order <span><math><mi>b</mi><mi>r</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>)</mo></math></span> in each part such that <span><math><mi>G</mi><mo>⟼</mo><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>m</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mo>)</mo></math></span>. We show that for every <span><math><mi>η</mi><mo>&gt;</mo><mn>0</mn></math></span>, there is an integer <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> such that for any <span><math><mi>N</mi><mo>&gt;</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> the following holds: Let <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span> such that <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>. Let <span><math><mi>G</mi><mo>[</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>]</mo></math></span> be a balanced bipartite graph on <span><math><mn>2</mn><mo>(</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> vertices with minimum degree <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>+</mo><mn>3</mn><mi>η</mi><mo>)</mo><mo>(</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. Then for any red-blue edge coloring of <em>G</em>, either there exist red even cycles of each length in <span><math><mo>{</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>8</mn><mo>,</mo><mo>…</mo><mo>,</mo><mo>(</mo><mn>2</mn><mo>−</mo><mn>3</mn><msup><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>N</mi><mo>}</mo></math></span>, or there exist blue even cycles of each length in <span><math><mo>{</mo><mn>4</mn><mo>,</mo><mn>6</mn><mo>,</mo><mn>8</mn><mo>,</mo><mo>…</mo><mo>,</mo><mo>(</mo><mn>2</mn><mo>−</mo><mn>3</mn><msup><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><msub><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>N</mi><mo>}</mo></math></span>. A construction is given to show that the bound <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>≥</mo><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>+</mo><mn>3</mn><mi>η</mi><mo>)</mo><mo>(</mo><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> is asymptotically tight. Furthermore, we give a stability result.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114363"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004941","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For graphs G, G1 and G2, we write G(G1,G2) if any red-blue edge coloring of G yields a red G1 or a blue G2. The Ramsey number r(G1,G2) is the minimum number n such that the complete graph Kn(G1,G2). There is an interesting phenomenon that for some graphs G1 and G2 there is a number 0<c<1 such that for any graph G of order r(G1,G2) with minimum degree δ(G)>c|V(G)|, G(G1,G2). When we focus on bipartite graphs, the bipartite Ramsey number br(G1,G2) is the minimum number n such that the complete bipartite graph Kn,n(G1,G2). Previous known related results on cycles are on the diagonal case (G1=G2=C2n). In this paper, we obtain an asymptotically tight bound for all off-diagonal cases, namely, we determine an asymptotically tight bound on the minimum degree of a balanced bipartite graph G with order br(C2m,C2n) in each part such that G(C2m,C2n). We show that for every η>0, there is an integer N0>0 such that for any N>N0 the following holds: Let α1>α2>0 such that α1+α2=1. Let G[X,Y] be a balanced bipartite graph on 2(N1) vertices with minimum degree δ(G)(34+3η)(N1). Then for any red-blue edge coloring of G, either there exist red even cycles of each length in {4,6,8,,(23η2)α1N}, or there exist blue even cycles of each length in {4,6,8,,(23η2)α2N}. A construction is given to show that the bound δ(G)(34+3η)(N1) is asymptotically tight. Furthermore, we give a stability result.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信