Larger nearly orthogonal sets over finite fields

IF 0.7 3区 数学 Q2 MATHEMATICS
Ishay Haviv , Sam Mattheus , Aleksa Milojević , Yuval Wigderson
{"title":"Larger nearly orthogonal sets over finite fields","authors":"Ishay Haviv ,&nbsp;Sam Mattheus ,&nbsp;Aleksa Milojević ,&nbsp;Yuval Wigderson","doi":"10.1016/j.disc.2024.114373","DOIUrl":null,"url":null,"abstract":"<div><div>For a field <span><math><mi>F</mi></math></span> and integers <em>d</em> and <em>k</em>, a set <span><math><mi>A</mi><mo>⊆</mo><msup><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> is called <em>k</em>-nearly orthogonal if its members are non-self-orthogonal and every <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vectors of <span><math><mi>A</mi></math></span> include an orthogonal pair. We prove that for every prime <em>p</em> there exists some <span><math><mi>δ</mi><mo>=</mo><mi>δ</mi><mo>(</mo><mi>p</mi><mo>)</mo><mo>&gt;</mo><mn>0</mn></math></span>, such that for every field <span><math><mi>F</mi></math></span> of characteristic <em>p</em> and for all integers <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> and <span><math><mi>d</mi><mo>≥</mo><mi>k</mi></math></span>, there exists a <em>k</em>-nearly orthogonal set of at least <span><math><msup><mrow><mi>d</mi></mrow><mrow><mi>δ</mi><mo>⋅</mo><mi>k</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>k</mi></mrow></msup></math></span> vectors of <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. The size of the set is optimal up to the <span><math><mi>log</mi><mo>⁡</mo><mi>k</mi></math></span> term in the exponent. We further prove two extensions of this result. In the first, we provide a large set <span><math><mi>A</mi></math></span> of non-self-orthogonal vectors of <span><math><msup><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> such that for every two subsets of <span><math><mi>A</mi></math></span> of size <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span> each, some vector of one of the subsets is orthogonal to some vector of the other. In the second extension, every <span><math><mi>k</mi><mo>+</mo><mn>1</mn></math></span> vectors of the produced set <span><math><mi>A</mi></math></span> include <span><math><mi>ℓ</mi><mo>+</mo><mn>1</mn></math></span> pairwise orthogonal vectors for an arbitrary fixed integer <span><math><mn>1</mn><mo>≤</mo><mi>ℓ</mi><mo>≤</mo><mi>k</mi></math></span>. The proofs involve probabilistic and spectral arguments and the hypergraph container method.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114373"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24005041","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a field F and integers d and k, a set AFd is called k-nearly orthogonal if its members are non-self-orthogonal and every k+1 vectors of A include an orthogonal pair. We prove that for every prime p there exists some δ=δ(p)>0, such that for every field F of characteristic p and for all integers k2 and dk, there exists a k-nearly orthogonal set of at least dδk/logk vectors of Fd. The size of the set is optimal up to the logk term in the exponent. We further prove two extensions of this result. In the first, we provide a large set A of non-self-orthogonal vectors of Fd such that for every two subsets of A of size k+1 each, some vector of one of the subsets is orthogonal to some vector of the other. In the second extension, every k+1 vectors of the produced set A include +1 pairwise orthogonal vectors for an arbitrary fixed integer 1k. The proofs involve probabilistic and spectral arguments and the hypergraph container method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信