Colon-targeted dual-coating MOF nanoparticles for the delivery of curcumin with anti-inflammatory properties in the treatment of ulcerative colitis

IF 5.4 2区 医学 Q1 BIOPHYSICS
Haoqiang Lei , Yipeng Liu , Jing Li , Junyuan Chen , Liji Chen , Ying Liu , Hongsheng Liu , Wenqiang Li , Zhuofei Jiang , Zhidong Li , Xiaohua Su
{"title":"Colon-targeted dual-coating MOF nanoparticles for the delivery of curcumin with anti-inflammatory properties in the treatment of ulcerative colitis","authors":"Haoqiang Lei ,&nbsp;Yipeng Liu ,&nbsp;Jing Li ,&nbsp;Junyuan Chen ,&nbsp;Liji Chen ,&nbsp;Ying Liu ,&nbsp;Hongsheng Liu ,&nbsp;Wenqiang Li ,&nbsp;Zhuofei Jiang ,&nbsp;Zhidong Li ,&nbsp;Xiaohua Su","doi":"10.1016/j.colsurfb.2025.114545","DOIUrl":null,"url":null,"abstract":"<div><div>The inflammatory response is the core mechanism of the pathogenesis and symptoms of ulcerative colitis (UC), and inhibiting inflammation is a promising therapeutic approach to improving UC. Curcumin is considered a potential treatment for UC due to its significant anti-inflammatory and antioxidant effects. However, its bioavailability in the post-oral administration is limited. Therefore, the stability, sustained release, and colon targeting of curcumin in the treatment of UC have become a challenge. Herein, curcumin was efficiently filled in the porous structure of University of Oslo 66 (UiO-66). Amino-functionalized UiO-66 (MOF) was bound to hyaluronic acid (HA) via chemical crosslinking and electrostatic interactions. Polydopamine (PDA) layer was then applied to form Cur@MOF@HA-PDA NPs for colon targeting for UC treatment. Cur@MOF@HA-PDA NPs not only enhanced the stability of curcumin but also possessed acid resistance and reactive oxygen species (ROS) responsive properties, enabling it to be effectively delivered to the UC lesion site for curcumin release after oral administration, thereby enhancing the therapeutic effect. <em>In vitro</em> studies revealed that Cur@MOF@HA-PDA NPs possessed the ability to eliminate intracellular ROS, inhibit inflammatory (M1) polarization, and promote anti-inflammatory (M2) polarization. Additionally, <em>in vivo</em> experiments demonstrated that Cur@MOF@HA-PDA NPs could effectively alleviate the intestinal inflammatory symptoms of UC mice, promoting intestinal tissue repair. Furthermore, it was also confirmed that Cur@MOF@HA-PDA NPs achieved the treatment of UC by inhibiting inflammatory responses, modulating intestinal immune functions, and promoting the polarization of M2 macrophages. In short, Cur@MOF@HA-PDA NPs, as colon-targeted drug delivery nanosystems, offer a promising therapeutic strategy for the treatment of UC.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"250 ","pages":"Article 114545"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525000529","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The inflammatory response is the core mechanism of the pathogenesis and symptoms of ulcerative colitis (UC), and inhibiting inflammation is a promising therapeutic approach to improving UC. Curcumin is considered a potential treatment for UC due to its significant anti-inflammatory and antioxidant effects. However, its bioavailability in the post-oral administration is limited. Therefore, the stability, sustained release, and colon targeting of curcumin in the treatment of UC have become a challenge. Herein, curcumin was efficiently filled in the porous structure of University of Oslo 66 (UiO-66). Amino-functionalized UiO-66 (MOF) was bound to hyaluronic acid (HA) via chemical crosslinking and electrostatic interactions. Polydopamine (PDA) layer was then applied to form Cur@MOF@HA-PDA NPs for colon targeting for UC treatment. Cur@MOF@HA-PDA NPs not only enhanced the stability of curcumin but also possessed acid resistance and reactive oxygen species (ROS) responsive properties, enabling it to be effectively delivered to the UC lesion site for curcumin release after oral administration, thereby enhancing the therapeutic effect. In vitro studies revealed that Cur@MOF@HA-PDA NPs possessed the ability to eliminate intracellular ROS, inhibit inflammatory (M1) polarization, and promote anti-inflammatory (M2) polarization. Additionally, in vivo experiments demonstrated that Cur@MOF@HA-PDA NPs could effectively alleviate the intestinal inflammatory symptoms of UC mice, promoting intestinal tissue repair. Furthermore, it was also confirmed that Cur@MOF@HA-PDA NPs achieved the treatment of UC by inhibiting inflammatory responses, modulating intestinal immune functions, and promoting the polarization of M2 macrophages. In short, Cur@MOF@HA-PDA NPs, as colon-targeted drug delivery nanosystems, offer a promising therapeutic strategy for the treatment of UC.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信