An exploration of machine learning approaches for early Autism Spectrum Disorder detection

Nawshin Haque, Tania Islam, Md Erfan
{"title":"An exploration of machine learning approaches for early Autism Spectrum Disorder detection","authors":"Nawshin Haque,&nbsp;Tania Islam,&nbsp;Md Erfan","doi":"10.1016/j.health.2024.100379","DOIUrl":null,"url":null,"abstract":"<div><div>Autism Spectrum Disorder is a neurodevelopmental condition impacting an individual’s repetitive behaviours, social skills, verbal and nonverbal communication abilities, and capacity for acquiring new knowledge. Manifesting typically in early childhood, specifically between 6 months and 5 years, the symptoms of autism exhibit a progressive nature over time. This study explores the application of Logistic Regression, Support Vector Classifier, K-Nearest Neighbour, Decision Tree, and Random Forest for predicting Autism in children and toddlers by leveraging advancements in machine learning. The efficacy of these techniques is evaluated using publicly accessible datasets specific to both age groups. The findings indicate remarkable performance, with the toddler dataset achieving a mean Intersection over Union (mIoU) of 100<span><math><mtext>%</mtext></math></span> for Support Vector Classifier and 99.80<span><math><mtext>%</mtext></math></span> for Logistic Regression. Similarly, the children dataset demonstrates outstanding results, achieving an mIoU of 100<span><math><mtext>%</mtext></math></span> for Support Vector Classifier and 99.96<span><math><mtext>%</mtext></math></span> for Logistic Regression. Furthermore, all algorithms achieved 100<span><math><mtext>%</mtext></math></span> accuracy on the children (age 4–11) dataset collected from real-world sources. Logistic Regression, Random Forest, Support Vector Classifier, and Decision Tree attained 100<span><math><mtext>%</mtext></math></span> accuracy and mIoU with the real-world dataset. These results underscore the potential of machine learning in aiding the early detection of ASD in children and toddlers, offering promising avenues for future research and clinical applications.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"7 ","pages":"Article 100379"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autism Spectrum Disorder is a neurodevelopmental condition impacting an individual’s repetitive behaviours, social skills, verbal and nonverbal communication abilities, and capacity for acquiring new knowledge. Manifesting typically in early childhood, specifically between 6 months and 5 years, the symptoms of autism exhibit a progressive nature over time. This study explores the application of Logistic Regression, Support Vector Classifier, K-Nearest Neighbour, Decision Tree, and Random Forest for predicting Autism in children and toddlers by leveraging advancements in machine learning. The efficacy of these techniques is evaluated using publicly accessible datasets specific to both age groups. The findings indicate remarkable performance, with the toddler dataset achieving a mean Intersection over Union (mIoU) of 100% for Support Vector Classifier and 99.80% for Logistic Regression. Similarly, the children dataset demonstrates outstanding results, achieving an mIoU of 100% for Support Vector Classifier and 99.96% for Logistic Regression. Furthermore, all algorithms achieved 100% accuracy on the children (age 4–11) dataset collected from real-world sources. Logistic Regression, Random Forest, Support Vector Classifier, and Decision Tree attained 100% accuracy and mIoU with the real-world dataset. These results underscore the potential of machine learning in aiding the early detection of ASD in children and toddlers, offering promising avenues for future research and clinical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信