Eco-friendly optical sensor membrane for nickel ion detection in water and food samples

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Abdullah H. Alluhayb , Alaa M. Younis , Ahmad O. Babalghith , Alaa S. Amin
{"title":"Eco-friendly optical sensor membrane for nickel ion detection in water and food samples","authors":"Abdullah H. Alluhayb ,&nbsp;Alaa M. Younis ,&nbsp;Ahmad O. Babalghith ,&nbsp;Alaa S. Amin","doi":"10.1016/j.rechem.2024.102007","DOIUrl":null,"url":null,"abstract":"<div><div>A sustainable method is investigated for the accurate, selective, and highly sensitive identification of minimal nickel ion concentrations across various environments. A unique optical sensing membrane is proposed for detecting Ni<sup>2+</sup> ions, utilizing the entrapment of 5-(2-benzothiazolylazo)-8-hydroxy-quinoline (BTAHQ) within a matrix of polyvinyl chloride (PVC) combined with dioctyl adipate (DOA). The sensor exhibits a broad linear span ranging from 2.5 to 110 ng mL<sup>−1</sup> under pH 4.0 conditions, featuring quantification and detection limits of 2.47 and 0.75 ng mL<sup>−1</sup>, respectively. The sensor’s maximum wavelength is recorded at 659 nm. Remarkably, the sensor membrane exhibits complete reversibility in its operation, showcasing superior specificity for Ni2<sup>+</sup> ions even in the presence of a wide range of competing cations and anions within the solution. The membrane exhibited excellent durability for 3.0 min, featured a swift response time (5.0 min), and demonstrated no detectable signs of reagent leaching. The sensor response exhibited a low coefficient of variation (CV) of 1.47 % for 60 ng mL<sup>−1</sup> of Ni<sup>2+</sup> ions, and the CV among seven sensor membranes was 1.63 %. Regenerating the sensor is a straightforward process accomplished with 0.5 mL of 0.1 M HNO<sub>3</sub> solution for 3.0 min. Its full reversibility and excellent selectivity for Ni<sup>2+</sup> ions in thiel buffer contribute to its efficacy. The suggested optical sensor was effectively employed for nickel determination in food and water samples.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"13 ","pages":"Article 102007"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715624007033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A sustainable method is investigated for the accurate, selective, and highly sensitive identification of minimal nickel ion concentrations across various environments. A unique optical sensing membrane is proposed for detecting Ni2+ ions, utilizing the entrapment of 5-(2-benzothiazolylazo)-8-hydroxy-quinoline (BTAHQ) within a matrix of polyvinyl chloride (PVC) combined with dioctyl adipate (DOA). The sensor exhibits a broad linear span ranging from 2.5 to 110 ng mL−1 under pH 4.0 conditions, featuring quantification and detection limits of 2.47 and 0.75 ng mL−1, respectively. The sensor’s maximum wavelength is recorded at 659 nm. Remarkably, the sensor membrane exhibits complete reversibility in its operation, showcasing superior specificity for Ni2+ ions even in the presence of a wide range of competing cations and anions within the solution. The membrane exhibited excellent durability for 3.0 min, featured a swift response time (5.0 min), and demonstrated no detectable signs of reagent leaching. The sensor response exhibited a low coefficient of variation (CV) of 1.47 % for 60 ng mL−1 of Ni2+ ions, and the CV among seven sensor membranes was 1.63 %. Regenerating the sensor is a straightforward process accomplished with 0.5 mL of 0.1 M HNO3 solution for 3.0 min. Its full reversibility and excellent selectivity for Ni2+ ions in thiel buffer contribute to its efficacy. The suggested optical sensor was effectively employed for nickel determination in food and water samples.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信