Vasiliy Demidov , Sergey Verkulich , Aleksey Ekaykin , Anton Terekhov , Arina Veres , Anna Kozachek , Sebastian Wetterich , Diana Soloveva , Mikhail Varentsov , Kirill Barskov
{"title":"Thaw slump development and other rapid permafrost disturbances in Hollendardalen Valley, Svalbard","authors":"Vasiliy Demidov , Sergey Verkulich , Aleksey Ekaykin , Anton Terekhov , Arina Veres , Anna Kozachek , Sebastian Wetterich , Diana Soloveva , Mikhail Varentsov , Kirill Barskov","doi":"10.1016/j.polar.2024.101122","DOIUrl":null,"url":null,"abstract":"<div><div>From 2019 to 2022, for the first time in Svalbard, the rapid development of a thaw slump was observed in Hollendardalen Valley (Nordenskiöld Land, West Spitsbergen), affecting an area of 6300 m<sup>2</sup>. Fast-paced thermokarst and thermo-erosion processes exposed massive ground ice, as well as thick ground ice veins within frozen silt strata. In the riverbed – in a non-carbonate, non-karstifying geological setting – thaw funnels appeared, swallowing part of the river flow, presumably via a local fault zone connecting to deep aquifers. The exposed ground ice has extremely low mineralization, dominated by Na<sup>+</sup> and SO<sub>4</sub><sup>2−</sup> ions. The properties and morphology of the ice veins point to segregation origins. The broad middle reaches of the Hollendardalen Valley exhibit thermokarst depressions and lakes, tabular terrace remnants and traces of past thaw slumping. Such morphology represents a thermo-erosional plain, formed through the interplay of fluvial erosion and a series of fast-paced thermo-erosion and thermokarst events. The very presence of massive ground ice in places where its appearance was previously unexpected indicates the possibility of detecting further ground ice of various thicknesses in Svalbard. Thus, ongoing and future permafrost warming will likely accelerate rapid permafrost thaw in Svalbard, reshaping the surface morphology and subsurface hydrology.</div></div>","PeriodicalId":20316,"journal":{"name":"Polar Science","volume":"42 ","pages":"Article 101122"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polar Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873965224001154","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
From 2019 to 2022, for the first time in Svalbard, the rapid development of a thaw slump was observed in Hollendardalen Valley (Nordenskiöld Land, West Spitsbergen), affecting an area of 6300 m2. Fast-paced thermokarst and thermo-erosion processes exposed massive ground ice, as well as thick ground ice veins within frozen silt strata. In the riverbed – in a non-carbonate, non-karstifying geological setting – thaw funnels appeared, swallowing part of the river flow, presumably via a local fault zone connecting to deep aquifers. The exposed ground ice has extremely low mineralization, dominated by Na+ and SO42− ions. The properties and morphology of the ice veins point to segregation origins. The broad middle reaches of the Hollendardalen Valley exhibit thermokarst depressions and lakes, tabular terrace remnants and traces of past thaw slumping. Such morphology represents a thermo-erosional plain, formed through the interplay of fluvial erosion and a series of fast-paced thermo-erosion and thermokarst events. The very presence of massive ground ice in places where its appearance was previously unexpected indicates the possibility of detecting further ground ice of various thicknesses in Svalbard. Thus, ongoing and future permafrost warming will likely accelerate rapid permafrost thaw in Svalbard, reshaping the surface morphology and subsurface hydrology.
期刊介绍:
Polar Science is an international, peer-reviewed quarterly journal. It is dedicated to publishing original research articles for sciences relating to the polar regions of the Earth and other planets. Polar Science aims to cover 15 disciplines which are listed below; they cover most aspects of physical sciences, geosciences and life sciences, together with engineering and social sciences. Articles should attract the interest of broad polar science communities, and not be limited to the interests of those who work under specific research subjects. Polar Science also has an Open Archive whereby published articles are made freely available from ScienceDirect after an embargo period of 24 months from the date of publication.
- Space and upper atmosphere physics
- Atmospheric science/climatology
- Glaciology
- Oceanography/sea ice studies
- Geology/petrology
- Solid earth geophysics/seismology
- Marine Earth science
- Geomorphology/Cenozoic-Quaternary geology
- Meteoritics
- Terrestrial biology
- Marine biology
- Animal ecology
- Environment
- Polar Engineering
- Humanities and social sciences.