Influence of particle size on NIR spectroscopic characterization of sorghum biomass for the biofuel industry

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Md Wadud Ahmed , Carlos A. Esquerre , Kristen Eilts , Dylan P. Allen , Scott M. McCoy , Sebastian Varela , Vijay Singh , Andrew D.B. Leakey , Mohammed Kamruzzaman
{"title":"Influence of particle size on NIR spectroscopic characterization of sorghum biomass for the biofuel industry","authors":"Md Wadud Ahmed ,&nbsp;Carlos A. Esquerre ,&nbsp;Kristen Eilts ,&nbsp;Dylan P. Allen ,&nbsp;Scott M. McCoy ,&nbsp;Sebastian Varela ,&nbsp;Vijay Singh ,&nbsp;Andrew D.B. Leakey ,&nbsp;Mohammed Kamruzzaman","doi":"10.1016/j.rechem.2024.102016","DOIUrl":null,"url":null,"abstract":"<div><div>NIR spectroscopy is a rapid and accurate green technology for high-throughput biomass characterization, including sorghum (<em>Sorghum bicolor</em>), a promising energy crop for the biofuel industry. This study assessed the influence of particle size on NIR spectroscopic analysis (wavelength range: 867–2535 nm) of sorghum biomass composition. Grown under field conditions, a total of 113 types of genetically diverse sorghum accessions were dried, ground, and sieved (&lt;250, 250–600, 600–850, and &gt; 850 µm particle size) for developing partial least square regression (PLSR) prediction models for moisture, ash, extractive, glucan, xylan, acid-soluble lignin (ASL), acid-insoluble lignin (AIL), and total lignin (ASL + AIL). Overall, smaller particle sizes provided better model performance, while no single particle size provided the best performance for all the selected components. With only 9 selected bands and 4 latent variables (LVs), the best PLSR model was obtained for moisture with particle size of 600–850 µm with the square root of the coefficient of determination (R) of 0.85, the ratio of prediction to deviation (RPD) of 2.2, and the root mean square error (RMSE) of 0.46 % in external validation. Similar model performances were also obtained for ash, extractive, glucan, and xylan. This study showed that size reduction could effectively improve NIR spectroscopic analysis for lipid-producing sorghum biomass for the biofuel industry.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"13 ","pages":"Article 102016"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715624007124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

NIR spectroscopy is a rapid and accurate green technology for high-throughput biomass characterization, including sorghum (Sorghum bicolor), a promising energy crop for the biofuel industry. This study assessed the influence of particle size on NIR spectroscopic analysis (wavelength range: 867–2535 nm) of sorghum biomass composition. Grown under field conditions, a total of 113 types of genetically diverse sorghum accessions were dried, ground, and sieved (<250, 250–600, 600–850, and > 850 µm particle size) for developing partial least square regression (PLSR) prediction models for moisture, ash, extractive, glucan, xylan, acid-soluble lignin (ASL), acid-insoluble lignin (AIL), and total lignin (ASL + AIL). Overall, smaller particle sizes provided better model performance, while no single particle size provided the best performance for all the selected components. With only 9 selected bands and 4 latent variables (LVs), the best PLSR model was obtained for moisture with particle size of 600–850 µm with the square root of the coefficient of determination (R) of 0.85, the ratio of prediction to deviation (RPD) of 2.2, and the root mean square error (RMSE) of 0.46 % in external validation. Similar model performances were also obtained for ash, extractive, glucan, and xylan. This study showed that size reduction could effectively improve NIR spectroscopic analysis for lipid-producing sorghum biomass for the biofuel industry.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信