Effects of magnetorheological elastomer as inner support material on sectional distortion in aluminum profile bend-twist forming

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Yu Wen, Jicai Liang, Songyue Yang, Yi Li, Ce Liang
{"title":"Effects of magnetorheological elastomer as inner support material on sectional distortion in aluminum profile bend-twist forming","authors":"Yu Wen,&nbsp;Jicai Liang,&nbsp;Songyue Yang,&nbsp;Yi Li,&nbsp;Ce Liang","doi":"10.1016/j.compscitech.2024.111022","DOIUrl":null,"url":null,"abstract":"<div><div>Magnetorheological Elastomers (MREs) have garnered significant attention in auxiliary forming due to their controllable mechanical properties. This study designs and prepares several styrene-butadiene rubber (SBR) MREs containing carbonyl iron powders (CIPs). The effects of different particle contents and magnetic field strengths on the sectional distortion in rectangular aluminum profile bend-twist deformation are investigated through experiments and ABAQUS numerical simulations. The results indicate that CIPs content, CB/CNT content, and magnetic field strength significantly impact the magneto-mechanical properties of MREs. The optimal suppression of sectional distortion in rectangular profiles is observed with 80 wt% CIPs and 2 wt% CB/CNT under a magnetic field strength of 400 mT, reducing the maximum collapse rate from 13.17 % to 6.85 % and the maximum bulge rate from 1.40 % to 0.98 %.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"261 ","pages":"Article 111022"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824005931","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetorheological Elastomers (MREs) have garnered significant attention in auxiliary forming due to their controllable mechanical properties. This study designs and prepares several styrene-butadiene rubber (SBR) MREs containing carbonyl iron powders (CIPs). The effects of different particle contents and magnetic field strengths on the sectional distortion in rectangular aluminum profile bend-twist deformation are investigated through experiments and ABAQUS numerical simulations. The results indicate that CIPs content, CB/CNT content, and magnetic field strength significantly impact the magneto-mechanical properties of MREs. The optimal suppression of sectional distortion in rectangular profiles is observed with 80 wt% CIPs and 2 wt% CB/CNT under a magnetic field strength of 400 mT, reducing the maximum collapse rate from 13.17 % to 6.85 % and the maximum bulge rate from 1.40 % to 0.98 %.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信