Electronic and photophysical properties of copper (II) Complexes: Insights into solvatochromic Effects, Photoreduction, and fluorescence behavior

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Haja Tar , Lama M. Alhomaidan , Lotfi Beji , Abrar S. Alnafisah , Noura Kouki , Sabri Messaoudi , Fahad M. Alminderej , Azizah A. Algreiby , Lotfi M. Aroua
{"title":"Electronic and photophysical properties of copper (II) Complexes: Insights into solvatochromic Effects, Photoreduction, and fluorescence behavior","authors":"Haja Tar ,&nbsp;Lama M. Alhomaidan ,&nbsp;Lotfi Beji ,&nbsp;Abrar S. Alnafisah ,&nbsp;Noura Kouki ,&nbsp;Sabri Messaoudi ,&nbsp;Fahad M. Alminderej ,&nbsp;Azizah A. Algreiby ,&nbsp;Lotfi M. Aroua","doi":"10.1016/j.rechem.2024.101957","DOIUrl":null,"url":null,"abstract":"<div><div>This study delves into the intricate electronic and photophysical properties of copper (II) complexes and their ligands, shedding light on their behavior under varying conditions. UV–Vis absorption spectroscopy unveils significant insights, revealing absorption peaks attributed to ligand–metal charge transfer transitions (LMCT) and π → π* transitions of C = N bonds. The solvent’s polarity dictates the absorption peak positions, indicating a pronounced solvatochromic effect. Molar extinction coefficients underscore the complexes’ high absorption efficiency across different solvents. Density Functional Theory (DFT) calculations provide a theoretical framework, elucidating electronic transitions observed experimentally. While HL1 exhibits a single peak, HL2 displays two peaks, findings supported by calculated transition energies and oscillator strengths.</div><div>Moreover, the oxidation processes of copper complexes with iodide salt and triethylamine unveil favorable electron transfer mechanisms, as corroborated by cyclic voltammograms and free energy change values. Photolysis experiments underpin the complexes’ behavior under light irradiation, revealing reversible photoreduction processes and the formation of novel photoproducts. Notably, the addition of triethylamine influences photolysis kinetics, elucidating complex interactions. Furthermore, fluorescence experiments unveil the fluorescent behavior of bidentate copper (II) complexes and their ligands. Fluorescence emission peaks, observed around 475–550 nm for complexes and 400–550 nm for ligands, are influenced by solvent polarity, indicating solvent effects on fluorescence deactivation pathways. Overall, this comprehensive investigation provides valuable insights into the electronic and photophysical characteristics of copper (II) complexes, paving the way for their potential applications in diverse fields, including materials science, catalysis, and photochemistry.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"13 ","pages":"Article 101957"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715624006532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study delves into the intricate electronic and photophysical properties of copper (II) complexes and their ligands, shedding light on their behavior under varying conditions. UV–Vis absorption spectroscopy unveils significant insights, revealing absorption peaks attributed to ligand–metal charge transfer transitions (LMCT) and π → π* transitions of C = N bonds. The solvent’s polarity dictates the absorption peak positions, indicating a pronounced solvatochromic effect. Molar extinction coefficients underscore the complexes’ high absorption efficiency across different solvents. Density Functional Theory (DFT) calculations provide a theoretical framework, elucidating electronic transitions observed experimentally. While HL1 exhibits a single peak, HL2 displays two peaks, findings supported by calculated transition energies and oscillator strengths.
Moreover, the oxidation processes of copper complexes with iodide salt and triethylamine unveil favorable electron transfer mechanisms, as corroborated by cyclic voltammograms and free energy change values. Photolysis experiments underpin the complexes’ behavior under light irradiation, revealing reversible photoreduction processes and the formation of novel photoproducts. Notably, the addition of triethylamine influences photolysis kinetics, elucidating complex interactions. Furthermore, fluorescence experiments unveil the fluorescent behavior of bidentate copper (II) complexes and their ligands. Fluorescence emission peaks, observed around 475–550 nm for complexes and 400–550 nm for ligands, are influenced by solvent polarity, indicating solvent effects on fluorescence deactivation pathways. Overall, this comprehensive investigation provides valuable insights into the electronic and photophysical characteristics of copper (II) complexes, paving the way for their potential applications in diverse fields, including materials science, catalysis, and photochemistry.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信