Rui Zhao, Wenhui Yang, Pengyan Yang, Yunhan Cao, Fenghuan Wang
{"title":"Preparation of defective UiO-67 for CA immobilization to improve the ability of CO2 capture and conversion","authors":"Rui Zhao, Wenhui Yang, Pengyan Yang, Yunhan Cao, Fenghuan Wang","doi":"10.1016/j.bej.2025.109661","DOIUrl":null,"url":null,"abstract":"<div><div>Carbonic anhydrase (CA) has been suggested as a biocatalyst for carbon dioxide capture since it could effectively catalyze the hydration of carbon dioxide. Metal-organic frameworks (MOFs) have attracted significant attention in the development of immobilized enzyme carriers due to their pore tunability and excellent stability. In this study, UiO-67 materials with varying defect degrees (DUiO-67) were prepared using the organic linker missing method to enhance the catalytic performance. The results indicated that both the defect degree and the pore size of DUiO-67 materials decreased with an increase in acetic acid equivalent. After CA immobilization, all DUiO-67 materials exhibited excellent thermal, pH and recycling stability. CA@DUiO-67–25 showed higher enzyme catalytic activity and conversion ability than the other materials. After 10 cycles, CA@DUiO-67–25 retained 57 % of its initial conversion capacity. The construction of defective MOFs provides a promising new strategy for CA immobilization to achieve the catalytic conversion of CO<sub>2</sub>.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"216 ","pages":"Article 109661"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X25000348","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbonic anhydrase (CA) has been suggested as a biocatalyst for carbon dioxide capture since it could effectively catalyze the hydration of carbon dioxide. Metal-organic frameworks (MOFs) have attracted significant attention in the development of immobilized enzyme carriers due to their pore tunability and excellent stability. In this study, UiO-67 materials with varying defect degrees (DUiO-67) were prepared using the organic linker missing method to enhance the catalytic performance. The results indicated that both the defect degree and the pore size of DUiO-67 materials decreased with an increase in acetic acid equivalent. After CA immobilization, all DUiO-67 materials exhibited excellent thermal, pH and recycling stability. CA@DUiO-67–25 showed higher enzyme catalytic activity and conversion ability than the other materials. After 10 cycles, CA@DUiO-67–25 retained 57 % of its initial conversion capacity. The construction of defective MOFs provides a promising new strategy for CA immobilization to achieve the catalytic conversion of CO2.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.