Novel thiazolyl-pyrimidine derivatives as potential anticancer agents: Synthesis, biological evaluation, and molecular docking studies

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Tariq Z. Abolibda , Abdel-Aziz A.A. El-Sayed , Basant Farag , Magdi E.A. Zaki , Abdulwahed Alrehaily , Hossein M. Elbadawy , Ahmad A. Al-Shahri , Saleh R. Alsenani , Sobhi M. Gomha
{"title":"Novel thiazolyl-pyrimidine derivatives as potential anticancer agents: Synthesis, biological evaluation, and molecular docking studies","authors":"Tariq Z. Abolibda ,&nbsp;Abdel-Aziz A.A. El-Sayed ,&nbsp;Basant Farag ,&nbsp;Magdi E.A. Zaki ,&nbsp;Abdulwahed Alrehaily ,&nbsp;Hossein M. Elbadawy ,&nbsp;Ahmad A. Al-Shahri ,&nbsp;Saleh R. Alsenani ,&nbsp;Sobhi M. Gomha","doi":"10.1016/j.rechem.2024.102008","DOIUrl":null,"url":null,"abstract":"<div><div>We synthesized and spectroscopically confirmed a series of 1,3-thiazolyl-pyrimidine derivatives to investigate their potential role in cancer therapy. These were created by reacting 2-(1-(6-methyl-2-oxo-4-phenyl- 1,2,3,4-tetrahydropyrimidin-5-yl)ethylidene)hydrazine-1-carbothioamide with hydrazonoyl halides and α-halo compounds, with structures confirmed by spectroscopy. The growth-inhibitory potential of these compounds against HepG2 liver cancer cells was assessed using the MTT assay. Five compounds, namely <strong>8a, 10, 12a, 12b,</strong> and <strong>14</strong>, exhibited promising anticancer activity with IC<sub>50</sub> values of 5.02 ± 1.83, 4.04 ± 1.37, 3.81 ± 1.96, 2.39 ± 0.75, and 3.27 ± 1.13 μM, respectively, all of which were more effective than doxorubicin (IC<sub>50</sub> = 6.18 ± 0.29 μM). Molecular docking analyses were conducted to investigate the probable binding conformations of the most potent anticancer agents. The docking studies were in good agreement with the in vitro biological results, revealing that compounds <strong>12b, 14, 12a, 10,</strong> and <strong>8a</strong> demonstrated strong molecular interactions with protein CK2 α. The compounds may serve as adjuvants in cancer treatment. <em>In silico</em> ADMET studies revealed that the synthesized compounds exhibit favorable oral bioavailability profiles.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"13 ","pages":"Article 102008"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715624007045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We synthesized and spectroscopically confirmed a series of 1,3-thiazolyl-pyrimidine derivatives to investigate their potential role in cancer therapy. These were created by reacting 2-(1-(6-methyl-2-oxo-4-phenyl- 1,2,3,4-tetrahydropyrimidin-5-yl)ethylidene)hydrazine-1-carbothioamide with hydrazonoyl halides and α-halo compounds, with structures confirmed by spectroscopy. The growth-inhibitory potential of these compounds against HepG2 liver cancer cells was assessed using the MTT assay. Five compounds, namely 8a, 10, 12a, 12b, and 14, exhibited promising anticancer activity with IC50 values of 5.02 ± 1.83, 4.04 ± 1.37, 3.81 ± 1.96, 2.39 ± 0.75, and 3.27 ± 1.13 μM, respectively, all of which were more effective than doxorubicin (IC50 = 6.18 ± 0.29 μM). Molecular docking analyses were conducted to investigate the probable binding conformations of the most potent anticancer agents. The docking studies were in good agreement with the in vitro biological results, revealing that compounds 12b, 14, 12a, 10, and 8a demonstrated strong molecular interactions with protein CK2 α. The compounds may serve as adjuvants in cancer treatment. In silico ADMET studies revealed that the synthesized compounds exhibit favorable oral bioavailability profiles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信