Biogenic synthesis of silver nanoparticles/reduced graphene oxide (AgNPs/rGO) mediated Nephelium lappaceum leaf extract as an effective solid acid catalyst for liquid-phase benzene nitration

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Dewi Yuanita Lestari , Akhmad Syoufian , Poedji Loekitowati Hariani , Amalia Kurnia Amin , Won-Chun Oh , Aldino Javier Saviola , Karna Wijaya
{"title":"Biogenic synthesis of silver nanoparticles/reduced graphene oxide (AgNPs/rGO) mediated Nephelium lappaceum leaf extract as an effective solid acid catalyst for liquid-phase benzene nitration","authors":"Dewi Yuanita Lestari ,&nbsp;Akhmad Syoufian ,&nbsp;Poedji Loekitowati Hariani ,&nbsp;Amalia Kurnia Amin ,&nbsp;Won-Chun Oh ,&nbsp;Aldino Javier Saviola ,&nbsp;Karna Wijaya","doi":"10.1016/j.rechem.2024.102014","DOIUrl":null,"url":null,"abstract":"<div><div>Researchers are increasingly required to adopt green chemistry principles in developing nanomaterials and their applications to support a sustainable chemical industry and contribute to environmental balance. This study presents the green synthesis of AgNPs/rGO nanocomposites using <em>Nephelium lappaceum</em> as both a bio-reductant and a capping agent, alongside their characterization and application as a solid acid catalyst in benzene nitration reactions. Graphene oxide (GO) was synthesized from graphite using a modified Hummers method, and the AgNPs/rGO nanocomposites were prepared via an ex-situ approach. In this process, <em>Nephelium lappaceum</em> leaf extract served to reduce both silver ions and GO to rGO. The results revealed that the silver nanoparticles were spherical, with an average diameter of 6.76 nm, and were uniformly deposited on the reduced graphene oxide (rGO) surface. Catalyst performance tests demonstrated that the synthesized AgNPs E5/rGO catalyst achieved excellent yields and selectivity in converting benzene into nitrobenzene. Furthermore, the catalyst exhibited remarkable reusability, with only a slight decrease in yield after five uses, while maintaining consistent selectivity toward nitrobenzene as an essential and promising chemical intermediate for many derived chemicals.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"13 ","pages":"Article 102014"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715624007100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Researchers are increasingly required to adopt green chemistry principles in developing nanomaterials and their applications to support a sustainable chemical industry and contribute to environmental balance. This study presents the green synthesis of AgNPs/rGO nanocomposites using Nephelium lappaceum as both a bio-reductant and a capping agent, alongside their characterization and application as a solid acid catalyst in benzene nitration reactions. Graphene oxide (GO) was synthesized from graphite using a modified Hummers method, and the AgNPs/rGO nanocomposites were prepared via an ex-situ approach. In this process, Nephelium lappaceum leaf extract served to reduce both silver ions and GO to rGO. The results revealed that the silver nanoparticles were spherical, with an average diameter of 6.76 nm, and were uniformly deposited on the reduced graphene oxide (rGO) surface. Catalyst performance tests demonstrated that the synthesized AgNPs E5/rGO catalyst achieved excellent yields and selectivity in converting benzene into nitrobenzene. Furthermore, the catalyst exhibited remarkable reusability, with only a slight decrease in yield after five uses, while maintaining consistent selectivity toward nitrobenzene as an essential and promising chemical intermediate for many derived chemicals.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信