Catalytic pathways for N-arylation of benzimidazoles: A comprehensive review

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Anila Ghulam , Tooba Jabeen , Sana Aslam , Matloob Ahmad , Magdi E.A. Zaki
{"title":"Catalytic pathways for N-arylation of benzimidazoles: A comprehensive review","authors":"Anila Ghulam ,&nbsp;Tooba Jabeen ,&nbsp;Sana Aslam ,&nbsp;Matloob Ahmad ,&nbsp;Magdi E.A. Zaki","doi":"10.1016/j.rechem.2025.102043","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>N</em>-arylated benzimidazoles are important structural motifs in many biologically active compounds. Due to their distinct physicochemical and structural features, they have applications in a wide range of domains, including pharmaceutical chemistry, material sciences, and catalysis. Synthetic chemists have devised a variety of methods to accomplish efficient <em>N</em>-arylation of benzimidazoles. Transition metal-based catalysis has emerged as a key strategy, utilizing metals such as copper (Cu), palladium (Pd), iron (Fe), nickel (Ni), iridium (Ir), and ruthenium (Ru). These catalysts, which are frequently supported by a variety of ligands, allow for the selective and efficient production of <em>N</em>-aryl bonds under a wide range of reaction conditions. Cross-coupling reactions, such as the Chan-Lam, Ullmann, and Buchwald-Hartwig protocols, are commonly used due to their durability and scalability. Metal-free techniques offer ecologically friendly options, and multicomponent reactions provide the benefit of convergent synthesis. Microwave-assisted reactions and photocatalyzed procedures have improved the efficiency, selectivity, and sustainability of <em>N</em>-arylation reactions. The review provides a comprehensive overview of the recent advancements and strategies employed in constructing this important class of heterocyclic compounds, highlighting their versatility and significance.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"13 ","pages":"Article 102043"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625000268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The N-arylated benzimidazoles are important structural motifs in many biologically active compounds. Due to their distinct physicochemical and structural features, they have applications in a wide range of domains, including pharmaceutical chemistry, material sciences, and catalysis. Synthetic chemists have devised a variety of methods to accomplish efficient N-arylation of benzimidazoles. Transition metal-based catalysis has emerged as a key strategy, utilizing metals such as copper (Cu), palladium (Pd), iron (Fe), nickel (Ni), iridium (Ir), and ruthenium (Ru). These catalysts, which are frequently supported by a variety of ligands, allow for the selective and efficient production of N-aryl bonds under a wide range of reaction conditions. Cross-coupling reactions, such as the Chan-Lam, Ullmann, and Buchwald-Hartwig protocols, are commonly used due to their durability and scalability. Metal-free techniques offer ecologically friendly options, and multicomponent reactions provide the benefit of convergent synthesis. Microwave-assisted reactions and photocatalyzed procedures have improved the efficiency, selectivity, and sustainability of N-arylation reactions. The review provides a comprehensive overview of the recent advancements and strategies employed in constructing this important class of heterocyclic compounds, highlighting their versatility and significance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信