{"title":"Riemann problem for polychromatic soliton gases: A testbed for the spectral kinetic theory","authors":"T. Congy, H.T. Carr, G. Roberti, G.A. El","doi":"10.1016/j.wavemoti.2024.103480","DOIUrl":null,"url":null,"abstract":"<div><div>We use Riemann problem for soliton gas as a benchmark for a detailed numerical validation of the spectral kinetic theory for the Korteweg–de Vries (KdV) and the focusing nonlinear Schrödinger (fNLS) equations. We construct weak solutions to the kinetic equation for soliton gas describing collision of two dense “polychromatic” soliton gases composed of a finite number of “monochromatic” components, each consisting of solitons with nearly identical spectral parameters of the scattering operator in the Lax pair. The interaction between the gas components plays the key role in the emergent, large-scale hydrodynamic evolution. We then use the solutions of the spectral kinetic equation to evaluate macroscopic physical observables in KdV and fNLS soliton gases and compare them with the respective ensemble averages extracted from the “exact” soliton gas numerical solutions of the KdV and fNLS equations. To numerically synthesise dense polychromatic soliton gases we develop a new method which combines recent advances in the spectral theory of the so-called soliton condensates and the effective algorithms for the numerical realisation of <span><math><mi>n</mi></math></span>-soliton solutions with large <span><math><mi>n</mi></math></span>.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"134 ","pages":"Article 103480"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524002105","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We use Riemann problem for soliton gas as a benchmark for a detailed numerical validation of the spectral kinetic theory for the Korteweg–de Vries (KdV) and the focusing nonlinear Schrödinger (fNLS) equations. We construct weak solutions to the kinetic equation for soliton gas describing collision of two dense “polychromatic” soliton gases composed of a finite number of “monochromatic” components, each consisting of solitons with nearly identical spectral parameters of the scattering operator in the Lax pair. The interaction between the gas components plays the key role in the emergent, large-scale hydrodynamic evolution. We then use the solutions of the spectral kinetic equation to evaluate macroscopic physical observables in KdV and fNLS soliton gases and compare them with the respective ensemble averages extracted from the “exact” soliton gas numerical solutions of the KdV and fNLS equations. To numerically synthesise dense polychromatic soliton gases we develop a new method which combines recent advances in the spectral theory of the so-called soliton condensates and the effective algorithms for the numerical realisation of -soliton solutions with large .
期刊介绍:
Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics.
The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.