{"title":"Near optimal colourability on (H, Kn−e)-free graphs","authors":"Yiao Ju , Shenwei Huang","doi":"10.1016/j.dam.2025.01.042","DOIUrl":null,"url":null,"abstract":"<div><div>A graph family <span><math><mi>G</mi></math></span> is <em>near optimal colourable</em> if there is a constant number <span><math><mi>c</mi></math></span>, such that every graph <span><math><mrow><mi>G</mi><mo>∈</mo><mi>G</mi></mrow></math></span> satisfies <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>max</mo><mrow><mo>{</mo><mi>c</mi><mo>,</mo><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>}</mo></mrow></mrow></math></span>, where <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> are the chromatic number and clique number of <span><math><mi>G</mi></math></span>, respectively. One may reduce the colouring problem on a near optimal colourable graph family to <span><math><mi>q</mi></math></span>-colouring problems for <span><math><mrow><mi>q</mi><mo>≤</mo><mi>c</mi><mo>−</mo><mn>1</mn></mrow></math></span>. In our previous paper [Y. Ju and S. Huang. Near optimal colourability on hereditary graph families. Theoretical Computer Science 994: 114465, 2024], we give an almost complete characterization for the near optimal colourability for (<span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>)-free graphs and give the open problem: “Decide whether the family of (<span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>)-free graphs is near optimal colourable, when <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is a forest with independence number at least 3 and <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>e</mi></mrow></math></span>\n (<span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>).” In this paper, we partially solve this open problem. We prove that for every <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, the family of (<span><math><mi>H</mi></math></span>, <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>e</mi></mrow></math></span>)-free graphs is near optimal colourable if <span><math><mi>H</mi></math></span> is an induced subgraph of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>, <span><math><mrow><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> or <span><math><mrow><mi>m</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> for any <span><math><mi>m</mi></math></span>, and not near optimal colourable if <span><math><mi>H</mi></math></span> contains an induced claw. Using these results, we give a complete classification on the near optimal colourability of (<span><math><mi>H</mi></math></span>, <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>e</mi></mrow></math></span>)-free graphs, when <span><math><mrow><mrow><mo>|</mo><mi>H</mi><mo>|</mo></mrow><mo>≤</mo><mn>4</mn></mrow></math></span>: the family of (<span><math><mi>H</mi></math></span>, <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>e</mi></mrow></math></span>)-free graphs (<span><math><mrow><mrow><mo>|</mo><mi>H</mi><mo>|</mo></mrow><mo>≤</mo><mn>4</mn></mrow></math></span>, <span><math><mrow><mi>n</mi><mo>≥</mo><mn>4</mn></mrow></math></span>) is near optimal colourable if and only if <span><math><mi>H</mi></math></span> is a linear forest.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"367 ","pages":"Pages 1-7"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25000472","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A graph family is near optimal colourable if there is a constant number , such that every graph satisfies , where and are the chromatic number and clique number of , respectively. One may reduce the colouring problem on a near optimal colourable graph family to -colouring problems for . In our previous paper [Y. Ju and S. Huang. Near optimal colourability on hereditary graph families. Theoretical Computer Science 994: 114465, 2024], we give an almost complete characterization for the near optimal colourability for ()-free graphs and give the open problem: “Decide whether the family of ()-free graphs is near optimal colourable, when is a forest with independence number at least 3 and
().” In this paper, we partially solve this open problem. We prove that for every , the family of (, )-free graphs is near optimal colourable if is an induced subgraph of , or for any , and not near optimal colourable if contains an induced claw. Using these results, we give a complete classification on the near optimal colourability of (, )-free graphs, when : the family of (, )-free graphs (, ) is near optimal colourable if and only if is a linear forest.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.