Internet of harvester nano things: A future prospects

IF 2.9 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Bitop Maitra , Emine Bardakci , Oktay Cetinkaya , Ozgur B. Akan
{"title":"Internet of harvester nano things: A future prospects","authors":"Bitop Maitra ,&nbsp;Emine Bardakci ,&nbsp;Oktay Cetinkaya ,&nbsp;Ozgur B. Akan","doi":"10.1016/j.nancom.2024.100550","DOIUrl":null,"url":null,"abstract":"<div><div>The advancements in nanotechnology, material science, and electrical engineering have shrunk the sizes of electronic devices down to the micro/nanoscale. This brings the opportunity of developing the Internet of Nano Things (IoNT), an extension of the Internet of Things (IoT). With nanodevices, numerous new possibilities emerge in the biomedical, military fields, and industrial products. However, a continuous energy supply is mandatory for these devices to work. At the micro/nanoscale, batteries cannot supply this demand due to size limitations and the limited energy contained in the batteries. Internet of Harvester Nano Things (IoHNT), a concept of Energy Harvesting (EH) integrated with wireless power transmission (WPT) techniques, converts the existing different energy sources into electrical energy and transmits to IoNT nodes. As IoHNTs are not directly attached to IoNTs, it gives flexibility in size. However, we define the size of IoHNTs as up to 10 cm. In this review, we comprehensively investigate the available energy sources and EH principles to wirelessly power IoNTs. We discuss the IoHNT principles, material selections, and state-of-the-art applications of each energy source for different sectoral applications. The different technologies of WPT and how communication is influenced by the incorporation of IoHNTs to power IoNTs are discussed with the future research directions. IoHNTs represent a shift in the nanodevice power supply, leading us towards a future where wireless technology is widespread. Hence, it will motivate researchers to envision and contribute to advancing the following power revolution in IoNT, providing unmatched simplicity and efficiency.</div></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"43 ","pages":"Article 100550"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878778924000565","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The advancements in nanotechnology, material science, and electrical engineering have shrunk the sizes of electronic devices down to the micro/nanoscale. This brings the opportunity of developing the Internet of Nano Things (IoNT), an extension of the Internet of Things (IoT). With nanodevices, numerous new possibilities emerge in the biomedical, military fields, and industrial products. However, a continuous energy supply is mandatory for these devices to work. At the micro/nanoscale, batteries cannot supply this demand due to size limitations and the limited energy contained in the batteries. Internet of Harvester Nano Things (IoHNT), a concept of Energy Harvesting (EH) integrated with wireless power transmission (WPT) techniques, converts the existing different energy sources into electrical energy and transmits to IoNT nodes. As IoHNTs are not directly attached to IoNTs, it gives flexibility in size. However, we define the size of IoHNTs as up to 10 cm. In this review, we comprehensively investigate the available energy sources and EH principles to wirelessly power IoNTs. We discuss the IoHNT principles, material selections, and state-of-the-art applications of each energy source for different sectoral applications. The different technologies of WPT and how communication is influenced by the incorporation of IoHNTs to power IoNTs are discussed with the future research directions. IoHNTs represent a shift in the nanodevice power supply, leading us towards a future where wireless technology is widespread. Hence, it will motivate researchers to envision and contribute to advancing the following power revolution in IoNT, providing unmatched simplicity and efficiency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Communication Networks
Nano Communication Networks Mathematics-Applied Mathematics
CiteScore
6.00
自引率
6.90%
发文量
14
期刊介绍: The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published. Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信