Efficient synthesis of phosphorus-promoted and alkali-modified ZSM-5 catalyst for catalytic dehydration of lactic acid to acrylic acid

IF 2.5 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ainur Syeitkhajy , Mohammed Alfatih Hamid , Mehtap Safak Boroglu , Ismail Boz
{"title":"Efficient synthesis of phosphorus-promoted and alkali-modified ZSM-5 catalyst for catalytic dehydration of lactic acid to acrylic acid","authors":"Ainur Syeitkhajy ,&nbsp;Mohammed Alfatih Hamid ,&nbsp;Mehtap Safak Boroglu ,&nbsp;Ismail Boz","doi":"10.1016/j.rechem.2024.101942","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel one-pot synthesis method for phosphorus-enhanced ZSM-5 zeolite, followed by post-synthesis alkali treatment. The resulting catalyst is designed for the sustainable production of acrylic acid (AA) from lactic acid (LA). Adding phosphorus as a promoter during synthesis significantly improved the acid-base properties of the zeolite. Additionally, the alkali treatment contributed to the overall optimization of the catalyst’s performance. Comprehensive analytical techniques, including XRD, BET, FT-IR, TGA, XPS, SEM, ICP-MS, DRIFT spectra, NH<sub>3</sub>, and CO<sub>2</sub>-TPD, were employed to elucidate the structural and acid-base properties of the ZSM-5/P-Na catalyst. Finally, an experimental design was developed to optimize the important operational variables in the LA dehydration reaction. The optimized ZSM-5/P-Na catalyst demonstrated excellent performance, achieving 83 % AA selectivity and 98 % LA conversion with a long catalytic lifetime of 50 h. This research demonstrates a promising approach for developing efficient catalysts for sustainable AA production.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"13 ","pages":"Article 101942"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715624006386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel one-pot synthesis method for phosphorus-enhanced ZSM-5 zeolite, followed by post-synthesis alkali treatment. The resulting catalyst is designed for the sustainable production of acrylic acid (AA) from lactic acid (LA). Adding phosphorus as a promoter during synthesis significantly improved the acid-base properties of the zeolite. Additionally, the alkali treatment contributed to the overall optimization of the catalyst’s performance. Comprehensive analytical techniques, including XRD, BET, FT-IR, TGA, XPS, SEM, ICP-MS, DRIFT spectra, NH3, and CO2-TPD, were employed to elucidate the structural and acid-base properties of the ZSM-5/P-Na catalyst. Finally, an experimental design was developed to optimize the important operational variables in the LA dehydration reaction. The optimized ZSM-5/P-Na catalyst demonstrated excellent performance, achieving 83 % AA selectivity and 98 % LA conversion with a long catalytic lifetime of 50 h. This research demonstrates a promising approach for developing efficient catalysts for sustainable AA production.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信