Process-chemistry intensification using non-thermal plasmas: Toward one-step chemical production

IF 9.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nefeli S. Kamarinopoulou , Darien K. Nguyen , Dionisios G. Vlachos
{"title":"Process-chemistry intensification using non-thermal plasmas: Toward one-step chemical production","authors":"Nefeli S. Kamarinopoulou ,&nbsp;Darien K. Nguyen ,&nbsp;Dionisios G. Vlachos","doi":"10.1016/j.cogsc.2025.100997","DOIUrl":null,"url":null,"abstract":"<div><div>Decarbonizing the chemical industry requires process electrification. Non-thermal plasmas present an electrification alternative to fossil fuel-based thermal chemistry due to their modularity, fast dynamics, and compatibility with renewable energy sources. Their most remarkable quality is the non-equilibrium state between molecules and high-energy electrons, enabling molecular activation at mild conditions. Unlike chemical manufacturing constrained by thermal activation, limiting feedstock options and necessitating multistep processes, plasma electron impact excitation can open direct (one step) chemical synthesis. We highlight the potential of plasmas from the perspective of process-chemistry intensification.</div></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"51 ","pages":"Article 100997"},"PeriodicalIF":9.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245222362500001X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Decarbonizing the chemical industry requires process electrification. Non-thermal plasmas present an electrification alternative to fossil fuel-based thermal chemistry due to their modularity, fast dynamics, and compatibility with renewable energy sources. Their most remarkable quality is the non-equilibrium state between molecules and high-energy electrons, enabling molecular activation at mild conditions. Unlike chemical manufacturing constrained by thermal activation, limiting feedstock options and necessitating multistep processes, plasma electron impact excitation can open direct (one step) chemical synthesis. We highlight the potential of plasmas from the perspective of process-chemistry intensification.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.00
自引率
2.20%
发文量
140
审稿时长
103 days
期刊介绍: The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信