Influence of adiabatic semi-circular grooved in backward-facing step on thermal-hydraulic characteristics of nanofluid

Q1 Chemical Engineering
Farhan Lafta Rashid , Muhammad Asmail Eleiwi , Tahseen Ahmad Tahseen , Hayder I. Mohammed , Sohaib Abdulrahman Tuama , Arman Ameen , Ephraim Bonah Agyekum
{"title":"Influence of adiabatic semi-circular grooved in backward-facing step on thermal-hydraulic characteristics of nanofluid","authors":"Farhan Lafta Rashid ,&nbsp;Muhammad Asmail Eleiwi ,&nbsp;Tahseen Ahmad Tahseen ,&nbsp;Hayder I. Mohammed ,&nbsp;Sohaib Abdulrahman Tuama ,&nbsp;Arman Ameen ,&nbsp;Ephraim Bonah Agyekum","doi":"10.1016/j.ijft.2024.101052","DOIUrl":null,"url":null,"abstract":"<div><div>This work examines the thermal-hydraulic performance of Al₂O₃-water nanofluids inside a backward-facing step (BFS) configuration characterized by insulated hot walls and semi-circular grooves, employing computational fluid dynamics (CFD) simulations in ANSYS Fluent. The main objective is to analyze the effects of nanoparticle concentration (2 %, 4 %, and 6 % by volume) and flow Reynolds number (10–250) on heat transfer and flow dynamics, with an emphasis on improving thermal management systems. The study primarily examines the lack of comprehension of nanofluid behavior in BFS geometries under laminar flow circumstances and investigates the correlation between flow recirculation, reattachment processes, and thermal boundary layer attributes. The findings indicate that elevated Reynolds numbers and nanoparticle concentrations markedly enhance heat transfer rates, with thermal convection coefficients rising by approximately 1.031, 1.063, and 1.096 times for 2 %, 4 %, and 6 % nanofluid concentrations, respectively, in comparison to the base fluid. The findings offer significant insights for enhancing thermal systems, including heat exchangers and cooling devices, with recommendations for further research in turbulent regimes and different geometries. This study enhances the existing research on nanofluid uses in sophisticated thermal management systems.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"26 ","pages":"Article 101052"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202724004919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This work examines the thermal-hydraulic performance of Al₂O₃-water nanofluids inside a backward-facing step (BFS) configuration characterized by insulated hot walls and semi-circular grooves, employing computational fluid dynamics (CFD) simulations in ANSYS Fluent. The main objective is to analyze the effects of nanoparticle concentration (2 %, 4 %, and 6 % by volume) and flow Reynolds number (10–250) on heat transfer and flow dynamics, with an emphasis on improving thermal management systems. The study primarily examines the lack of comprehension of nanofluid behavior in BFS geometries under laminar flow circumstances and investigates the correlation between flow recirculation, reattachment processes, and thermal boundary layer attributes. The findings indicate that elevated Reynolds numbers and nanoparticle concentrations markedly enhance heat transfer rates, with thermal convection coefficients rising by approximately 1.031, 1.063, and 1.096 times for 2 %, 4 %, and 6 % nanofluid concentrations, respectively, in comparison to the base fluid. The findings offer significant insights for enhancing thermal systems, including heat exchangers and cooling devices, with recommendations for further research in turbulent regimes and different geometries. This study enhances the existing research on nanofluid uses in sophisticated thermal management systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信