{"title":"Optimization of the rotational mode entanglement in a ring-shaped cavity with Casimir forces","authors":"Rubab Shabir , Fazal Badshah , Sobia Asghar , Ziauddin , Muhammad Idrees , Shi-Hai Dong","doi":"10.1016/j.cjph.2024.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>This research explores the measurement and enhancement of entanglement between two rotational modes generated by rotating mirrors within a ring cavity system. The study specifically focuses on the role of the Casimir force in augmenting the entanglement of these modes. A detailed analysis is conducted to understand the impact of various parameters on the entanglement, including the distances between the external plates and the rotating mirrors (<span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>), the radius of the rotating mirrors (<span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>), the temperature (<span><math><mi>T</mi></math></span>), and the areas of the external plates. The findings reveal that the presence of the Casimir force significantly enhances the entanglement between the rotational modes. This research introduces a novel technique for modulating the entanglement of rotational modes through the influence of the Casimir force, presenting new possibilities for advancements in quantum information science.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"93 ","pages":"Pages 172-182"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324004672","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This research explores the measurement and enhancement of entanglement between two rotational modes generated by rotating mirrors within a ring cavity system. The study specifically focuses on the role of the Casimir force in augmenting the entanglement of these modes. A detailed analysis is conducted to understand the impact of various parameters on the entanglement, including the distances between the external plates and the rotating mirrors (), the radius of the rotating mirrors (), the temperature (), and the areas of the external plates. The findings reveal that the presence of the Casimir force significantly enhances the entanglement between the rotational modes. This research introduces a novel technique for modulating the entanglement of rotational modes through the influence of the Casimir force, presenting new possibilities for advancements in quantum information science.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.