Dynamic interplay of anisotropy and matter–geometry coupling in stellar structures: A comprehensive study on the stability of pulsars 4U 1820-30 and LMC X-4
{"title":"Dynamic interplay of anisotropy and matter–geometry coupling in stellar structures: A comprehensive study on the stability of pulsars 4U 1820-30 and LMC X-4","authors":"Tayyab Naseer , M. Sharif , Fatima Chand , Assmaa Abd-Elmonem , Nagat A.A. Suoliman","doi":"10.1016/j.cjph.2024.11.032","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the behavior of dense celestial objects within the context of <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> theory. We develop modified Einstein field equations that account for the anisotropic configured static interior spacetime. By applying two specific constraints associated with the radial metric function and anisotropic pressure, we find a couple of solutions to these highly non-linear gravitational equations. For both models, we encounter differential equations whose integration yield constants which are determined through matching conditions. Additionally, the requirement of vanishing radial pressure at the hypersurface also plays an important role in this context. Furthermore, we graphically evaluate certain conditions whose fulfillment ensures the model’s feasibility under different parametric values. For this, we take into account the observational data of two compact stars 4U 1820-30 and LMC X-4. We conclude both our models to be well-aligned with the required viability and stability criteria. We must highlight here that our study advances the understanding of how <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>,</mo><mi>T</mi><mo>)</mo></mrow></mrow></math></span> gravity affects the internal structure of compact stars, providing valuable insights for future explorations.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"93 ","pages":"Pages 75-93"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S057790732400460X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the behavior of dense celestial objects within the context of theory. We develop modified Einstein field equations that account for the anisotropic configured static interior spacetime. By applying two specific constraints associated with the radial metric function and anisotropic pressure, we find a couple of solutions to these highly non-linear gravitational equations. For both models, we encounter differential equations whose integration yield constants which are determined through matching conditions. Additionally, the requirement of vanishing radial pressure at the hypersurface also plays an important role in this context. Furthermore, we graphically evaluate certain conditions whose fulfillment ensures the model’s feasibility under different parametric values. For this, we take into account the observational data of two compact stars 4U 1820-30 and LMC X-4. We conclude both our models to be well-aligned with the required viability and stability criteria. We must highlight here that our study advances the understanding of how gravity affects the internal structure of compact stars, providing valuable insights for future explorations.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.