Pavel S. Pankin , Dmitrii N. Maksimov , Stepan V. Nabol , Daniil S. Buzin , Aleksey I. Krasnov , Vitaly S. Sutormin , Denis A. Kostikov , Abylgazy S. Abdullaev , Mikhail N. Krakhalev , Nikita A. Zolotovskii , Sergey V. Nedelin , Igor A. Tambasov , Victor Ya. Zyryanov , Ivan V. Timofeev
{"title":"Voltage-induced transparency of photonic crystal microcavity with chiral liquid crystal layer","authors":"Pavel S. Pankin , Dmitrii N. Maksimov , Stepan V. Nabol , Daniil S. Buzin , Aleksey I. Krasnov , Vitaly S. Sutormin , Denis A. Kostikov , Abylgazy S. Abdullaev , Mikhail N. Krakhalev , Nikita A. Zolotovskii , Sergey V. Nedelin , Igor A. Tambasov , Victor Ya. Zyryanov , Ivan V. Timofeev","doi":"10.1016/j.photonics.2024.101350","DOIUrl":null,"url":null,"abstract":"<div><div>A resonant microcavity with photonic crystal mirrors and a chiral liquid crystal resonant layer is fabricated. In our experimental set-up the microcavity is illuminated at Brewster’s angle, for which the TM-polarized scattering channels are open, while the TE-polarized channels are closed. Thus, the problem is reduced to two-channel scattering. By applying an external voltage to the resonant layer it is possible to control the position, linewidth and amplitude of multiple resonant lines via changing the radiation decay rate into the scattering channels due to polarization mixing within the chiral layer. It is found, that under a certain value of the applied voltage, the microcavity becomes transparent over a wide spectral range, i.e. none of the resonant modes can be excited.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"63 ","pages":"Article 101350"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024001251","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A resonant microcavity with photonic crystal mirrors and a chiral liquid crystal resonant layer is fabricated. In our experimental set-up the microcavity is illuminated at Brewster’s angle, for which the TM-polarized scattering channels are open, while the TE-polarized channels are closed. Thus, the problem is reduced to two-channel scattering. By applying an external voltage to the resonant layer it is possible to control the position, linewidth and amplitude of multiple resonant lines via changing the radiation decay rate into the scattering channels due to polarization mixing within the chiral layer. It is found, that under a certain value of the applied voltage, the microcavity becomes transparent over a wide spectral range, i.e. none of the resonant modes can be excited.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.