{"title":"Design of a compact atto-joule-per-bit bus-coupled photonic nanocavity switch","authors":"Jianhao Shen, Swapnajit Chakravarty","doi":"10.1016/j.photonics.2024.101346","DOIUrl":null,"url":null,"abstract":"<div><div>We experimentally demonstrate an array of bus-coupled compact one-dimensional photonic crystal nanocavities with large extinction, high-quality factor, and large free spectral range (FSR) exceeding 300 nm centered on the telecom wavelength at 1550 nm. We present designs for an oxide-clad bus-coupled PC switch with 0.96 dB insertion loss, 4.33 dB extinction, and ∼260 aJ/bit switching energy by careful control of the cavity geometry as well as p-n junction doping. We also demonstrate that air-clad bus-coupled PC switches can operate with 1 dB insertion loss, 3 dB extinction, and ∼80 aJ/bit switching energy. We present a design route integrating phase change materials that can undergo a controlled transition between amorphous to crystalline material phases of the PCMs for a large change in refractive index. The large index change can overcome fabrication imperfections to effectively align the PC nanocavity resonance to the source laser wavelength thereby enabling true atto-joule per bit operation without the need for active power-consuming thermal heaters.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"63 ","pages":"Article 101346"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024001214","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We experimentally demonstrate an array of bus-coupled compact one-dimensional photonic crystal nanocavities with large extinction, high-quality factor, and large free spectral range (FSR) exceeding 300 nm centered on the telecom wavelength at 1550 nm. We present designs for an oxide-clad bus-coupled PC switch with 0.96 dB insertion loss, 4.33 dB extinction, and ∼260 aJ/bit switching energy by careful control of the cavity geometry as well as p-n junction doping. We also demonstrate that air-clad bus-coupled PC switches can operate with 1 dB insertion loss, 3 dB extinction, and ∼80 aJ/bit switching energy. We present a design route integrating phase change materials that can undergo a controlled transition between amorphous to crystalline material phases of the PCMs for a large change in refractive index. The large index change can overcome fabrication imperfections to effectively align the PC nanocavity resonance to the source laser wavelength thereby enabling true atto-joule per bit operation without the need for active power-consuming thermal heaters.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.