Youngsoo Kim, Seung Hyeon Hong, Seokhyeon Hong, Soon-Hong Kwon
{"title":"Bimetal-wrapped nanowire structure for improved efficiency and unidirectional emission of single-photon sources","authors":"Youngsoo Kim, Seung Hyeon Hong, Seokhyeon Hong, Soon-Hong Kwon","doi":"10.1016/j.photonics.2024.101349","DOIUrl":null,"url":null,"abstract":"<div><div>To meet the increasing demand for wavelength scaled light-emitting devices, this study developed a novel dielectric nanowire configuration comprising two distinct metals. This structure is expected to function as a unidirectional light source owing to the reflection occurring at the junctions of the two metals. The performance of this structure as a unidirectional nanosized light source was validated using finite-difference time-domain (FDTD) simulations. With a minimal waveguide width of w = 115 nm, this structure mitigates the risks associated with free-space radiation and interference from other wavelength modes. The subwavelength-sized surface plasmon polariton waveguide caused substantial field concentration, resulting in a spontaneous emission enhancement rate approximately 50 times higher than that of the bulk material. The exceptional characteristics and significantly elevated spontaneous emission enhancement rate of the proposed structure suggest its potential as a single-photon light source.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"63 ","pages":"Article 101349"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156944102400124X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To meet the increasing demand for wavelength scaled light-emitting devices, this study developed a novel dielectric nanowire configuration comprising two distinct metals. This structure is expected to function as a unidirectional light source owing to the reflection occurring at the junctions of the two metals. The performance of this structure as a unidirectional nanosized light source was validated using finite-difference time-domain (FDTD) simulations. With a minimal waveguide width of w = 115 nm, this structure mitigates the risks associated with free-space radiation and interference from other wavelength modes. The subwavelength-sized surface plasmon polariton waveguide caused substantial field concentration, resulting in a spontaneous emission enhancement rate approximately 50 times higher than that of the bulk material. The exceptional characteristics and significantly elevated spontaneous emission enhancement rate of the proposed structure suggest its potential as a single-photon light source.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.