Enhancing global agricultural monitoring system for climate-smart agriculture

Le Yu , Zhenrong Du , Xiyu Li , Jinhui Zheng , Qiang Zhao , Hui Wu , Duoji weise , Yuanzhen Yang , Quan Zhang , Xinyue Li , Xiaorui Ma , Xiaomeng Huang
{"title":"Enhancing global agricultural monitoring system for climate-smart agriculture","authors":"Le Yu ,&nbsp;Zhenrong Du ,&nbsp;Xiyu Li ,&nbsp;Jinhui Zheng ,&nbsp;Qiang Zhao ,&nbsp;Hui Wu ,&nbsp;Duoji weise ,&nbsp;Yuanzhen Yang ,&nbsp;Quan Zhang ,&nbsp;Xinyue Li ,&nbsp;Xiaorui Ma ,&nbsp;Xiaomeng Huang","doi":"10.1016/j.csag.2024.100037","DOIUrl":null,"url":null,"abstract":"<div><div>Global agricultural monitoring systems face unprecedented challenges due to intensifying climate change. This paper reviews the advancements in existing global agricultural monitoring systems, highlighting deficiencies in addressing extreme weather events, data integration, and real-time analysis. To overcome these limitations, we introduce the Earth System Model-Coupled Global Agricultural Monitoring System (ESM-GAMS), an advanced framework that combines satellite and near-surface remote sensing, artificial intelligence-driven modeling, supercomputing, and crop model to enhance the accuracy and timeliness of crop monitoring and yield predictions under diverse climate scenarios. By integrating multi-source remote sensing data, ESM-GAMS mitigates delays caused by satellite revisit cycles and weather interference, enabling near real-time monitoring with results available at hourly or minute-level intervals. Additionally, the system demonstrated high accuracy in yield simulations under extreme weather, with the improved WOFOST model achieving robust R<sup>2</sup> values ranging from 0.55 to 0.77, indicating its reliability in predicting yields across diverse conditions. ESM-GAMS not only enables detailed daily monitoring of crop growth, but also provides early-warning capabilities for extreme weather and its impact on prediction. By optimizing resource allocation, supporting climate resilience, and enabling global data computing, ESM-GAMS represents a further step toward achieving climate-smart agriculture.</div></div>","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"2 1","pages":"Article 100037"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Smart Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950409024000376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global agricultural monitoring systems face unprecedented challenges due to intensifying climate change. This paper reviews the advancements in existing global agricultural monitoring systems, highlighting deficiencies in addressing extreme weather events, data integration, and real-time analysis. To overcome these limitations, we introduce the Earth System Model-Coupled Global Agricultural Monitoring System (ESM-GAMS), an advanced framework that combines satellite and near-surface remote sensing, artificial intelligence-driven modeling, supercomputing, and crop model to enhance the accuracy and timeliness of crop monitoring and yield predictions under diverse climate scenarios. By integrating multi-source remote sensing data, ESM-GAMS mitigates delays caused by satellite revisit cycles and weather interference, enabling near real-time monitoring with results available at hourly or minute-level intervals. Additionally, the system demonstrated high accuracy in yield simulations under extreme weather, with the improved WOFOST model achieving robust R2 values ranging from 0.55 to 0.77, indicating its reliability in predicting yields across diverse conditions. ESM-GAMS not only enables detailed daily monitoring of crop growth, but also provides early-warning capabilities for extreme weather and its impact on prediction. By optimizing resource allocation, supporting climate resilience, and enabling global data computing, ESM-GAMS represents a further step toward achieving climate-smart agriculture.

Abstract Image

加强全球农业监测体系,促进气候智能型农业发展
由于气候变化加剧,全球农业监测系统面临前所未有的挑战。本文回顾了现有全球农业监测系统的进展,强调了在应对极端天气事件、数据集成和实时分析方面的不足。为了克服这些限制,我们引入了地球系统模型耦合全球农业监测系统(ESM-GAMS),这是一个结合卫星和近地遥感、人工智能驱动建模、超级计算和作物模型的先进框架,以提高不同气候情景下作物监测和产量预测的准确性和及时性。通过整合多源遥感数据,ESM-GAMS减轻了卫星重访周期和天气干扰造成的延迟,实现了近实时监测,每小时或每分钟可获得结果。此外,该系统在极端天气下的产量模拟中显示出很高的准确性,改进的WOFOST模型的R2值在0.55至0.77之间,表明其在不同条件下预测产量的可靠性。ESM-GAMS不仅可以对作物生长进行详细的日常监测,还可以提供极端天气及其对预测的影响的早期预警能力。通过优化资源配置、支持气候适应能力和实现全球数据计算,ESM-GAMS向实现气候智慧型农业又迈进了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信