Advancement of Pt and Pd-based catalysis for green, sustainable energy and bio-medical applications

Q2 Materials Science
Nithyadharseni Palaniyandy , Sekhosana Kutloano , Lakshmi Devaraj , Xolile Fuku , Sathish Sundar Dhilip Kumar
{"title":"Advancement of Pt and Pd-based catalysis for green, sustainable energy and bio-medical applications","authors":"Nithyadharseni Palaniyandy ,&nbsp;Sekhosana Kutloano ,&nbsp;Lakshmi Devaraj ,&nbsp;Xolile Fuku ,&nbsp;Sathish Sundar Dhilip Kumar","doi":"10.1016/j.crgsc.2025.100446","DOIUrl":null,"url":null,"abstract":"<div><div>Platinum (Pt) and palladium (Pd) -based catalysts have sparked intense research interest for many important reactions in green energy and sustainable technologies such as key industrial petrochemical processes, fine chemical synthesis, environmental protection, renewable energy conversion and microbial, as their specific activity, stability and selectivity are greatly higher. However, the availability of low-cost electrodes/catalysts with high activity and stable electrochemical performance is crucial for the development of long-term and cost-effective green energy, environmental and sustainable technologies. In response to the growing demand for these products, the development of strategies to produce various materials is being intensified. This review summarizes the recent research efforts to develop advanced noble metal-based electrocatalysts with excellent performance for water splitting catalysis, CO<sub>2</sub> reduction, electrochemical sensors and antimicrobial applications. Pt and Pd co-catalysts in photocatalytic water splitting are examined for their contributions to clean hydrogen production, with a focus on bandgap adjustment, reduced recombination time, and enhanced charge carrier separation. The electrochemical reduction of carbon dioxide is also explored, highlighting the selectivity and efficiency of Pt and Pd systems, addressing both carbon capture and the generation of valuable chemicals. Similarly, their role as co-catalysts in photocatalytic carbon dioxide reduction is discussed for improved efficiency and selectivity. The review also addresses Pt- and Pd-based electrochemical sensors, emphasizing their catalytic roles in medical diagnostics and gas sensing. Further, the antimicrobial properties of Pt and Pd nanoparticles are explored, showcasing their potent inhibition of bacterial growth, disruption of biofilm formation, and effectiveness against multidrug-resistant bacteria. Additionally, the unique attributes of metal nanoclusters for biomedical sensing and imaging applications are discussed. Finally, a personal outlook is given to highlight the challenges and opportunities for the development of novel electrocatalysts suitable for a wide range of commercial applications in fostering advancements in sustainable technologies and materials.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"10 ","pages":"Article 100446"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666086525000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Platinum (Pt) and palladium (Pd) -based catalysts have sparked intense research interest for many important reactions in green energy and sustainable technologies such as key industrial petrochemical processes, fine chemical synthesis, environmental protection, renewable energy conversion and microbial, as their specific activity, stability and selectivity are greatly higher. However, the availability of low-cost electrodes/catalysts with high activity and stable electrochemical performance is crucial for the development of long-term and cost-effective green energy, environmental and sustainable technologies. In response to the growing demand for these products, the development of strategies to produce various materials is being intensified. This review summarizes the recent research efforts to develop advanced noble metal-based electrocatalysts with excellent performance for water splitting catalysis, CO2 reduction, electrochemical sensors and antimicrobial applications. Pt and Pd co-catalysts in photocatalytic water splitting are examined for their contributions to clean hydrogen production, with a focus on bandgap adjustment, reduced recombination time, and enhanced charge carrier separation. The electrochemical reduction of carbon dioxide is also explored, highlighting the selectivity and efficiency of Pt and Pd systems, addressing both carbon capture and the generation of valuable chemicals. Similarly, their role as co-catalysts in photocatalytic carbon dioxide reduction is discussed for improved efficiency and selectivity. The review also addresses Pt- and Pd-based electrochemical sensors, emphasizing their catalytic roles in medical diagnostics and gas sensing. Further, the antimicrobial properties of Pt and Pd nanoparticles are explored, showcasing their potent inhibition of bacterial growth, disruption of biofilm formation, and effectiveness against multidrug-resistant bacteria. Additionally, the unique attributes of metal nanoclusters for biomedical sensing and imaging applications are discussed. Finally, a personal outlook is given to highlight the challenges and opportunities for the development of novel electrocatalysts suitable for a wide range of commercial applications in fostering advancements in sustainable technologies and materials.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Green and Sustainable Chemistry
Current Research in Green and Sustainable Chemistry Materials Science-Materials Chemistry
CiteScore
11.20
自引率
0.00%
发文量
116
审稿时长
78 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信