Performance evaluation of interrupted and hybrid channel heat sinks for a triple junction high concentrator photovoltaic cell

Q1 Chemical Engineering
Muhammad Usman Sajid, Omer Abedrabboh, Yusuf Bicer
{"title":"Performance evaluation of interrupted and hybrid channel heat sinks for a triple junction high concentrator photovoltaic cell","authors":"Muhammad Usman Sajid,&nbsp;Omer Abedrabboh,&nbsp;Yusuf Bicer","doi":"10.1016/j.ijft.2025.101102","DOIUrl":null,"url":null,"abstract":"<div><div>High concentrator photovoltaic (HCPV) systems are designed to minimize the use of semiconductor materials by concentrating sunlight onto a smaller cell area. However, managing the excess heat generated during this concentration is a significant challenge, as it can affect the efficiency and lifespan of the HCPV cells. Effective thermal management solutions are essential to ensure reliable and cost-effective operation. The objective of this study is to propose interrupted and hybrid channel heat sinks designed to effectively maintain the temperature of HCPV systems within safe operating limits. The present work explores the impact of heat sink channel configuration, concentration ratio, and Reynolds number on the performance of a high concentration triple-junction solar cell. A comprehensive thermal model was developed in COMSOL Multiphysics, and numerical results were validated against multiple sets of available experimental and computational data, ensuring both accuracy and reliability. The results reveal that the hybrid channel design (Geometry F) significantly reduces the maximum solar cell temperature from 82 °C to 78 °C at CR = 1500 and <em>Re</em> = 400, achieving up to a 39.5 % increase in the Nusselt number compared to the conventional straight channel design (Geometry A). Additionally, Geometry (F) maintains a high performance evaluation criterion (PEC) value of 1.22 at <em>Re</em> = 200, reflecting effective thermal-hydraulic performance. Furthermore, Geometry (F) reduces the heat sink weight by 3.7 %, which is particularly advantageous for sun-tracking applications, where minimizing weight is essential.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"26 ","pages":"Article 101102"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725000503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

High concentrator photovoltaic (HCPV) systems are designed to minimize the use of semiconductor materials by concentrating sunlight onto a smaller cell area. However, managing the excess heat generated during this concentration is a significant challenge, as it can affect the efficiency and lifespan of the HCPV cells. Effective thermal management solutions are essential to ensure reliable and cost-effective operation. The objective of this study is to propose interrupted and hybrid channel heat sinks designed to effectively maintain the temperature of HCPV systems within safe operating limits. The present work explores the impact of heat sink channel configuration, concentration ratio, and Reynolds number on the performance of a high concentration triple-junction solar cell. A comprehensive thermal model was developed in COMSOL Multiphysics, and numerical results were validated against multiple sets of available experimental and computational data, ensuring both accuracy and reliability. The results reveal that the hybrid channel design (Geometry F) significantly reduces the maximum solar cell temperature from 82 °C to 78 °C at CR = 1500 and Re = 400, achieving up to a 39.5 % increase in the Nusselt number compared to the conventional straight channel design (Geometry A). Additionally, Geometry (F) maintains a high performance evaluation criterion (PEC) value of 1.22 at Re = 200, reflecting effective thermal-hydraulic performance. Furthermore, Geometry (F) reduces the heat sink weight by 3.7 %, which is particularly advantageous for sun-tracking applications, where minimizing weight is essential.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信